Approximate Solutions to Nonsmooth Multiobjective Programming Problems

被引:0
作者
Golestani, Mohammad [1 ]
机构
[1] Fasa Univ, Dept Math, Fasa, Iran
来源
MINIMAX THEORY AND ITS APPLICATIONS | 2022年 / 7卷 / 01期
关键词
Mathematical programming; optimality conditions; nonlinear programming; nonsmooth analysis and approximate conditions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a multiobjective mathematical programming problem with inequality and equality constraints, where all functions are locally Lipschitz. An approximate strong Karush-Kuhn-Tucker (ASKKT for short) condition is defined and we show that every local efficient solution is an ASKKT point without any additional condition. Then a nonsmooth version of cone-continuity regularity is defined for this kind of problem. It is revealed that every ASKKT point under the cone-continuity regularity is a strong Karush-Kuhn-Tucker (SKKT for short) point. Correspondingly, the ASKKTs and the cone-continuity property are defined and the relations between them are investigated.
引用
收藏
页码:119 / 130
页数:12
相关论文
共 20 条
[1]   A CONE-CONTINUITY CONSTRAINT QUALIFICATION AND ALGORITHMIC CONSEQUENCES [J].
Andreani, Roberto ;
Martinez, Jose Mario ;
Ramos, Alberto ;
Silva, Paulo J. S. .
SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (01) :96-110
[2]   On sequential optimality conditions for smooth constrained optimization [J].
Andreani, Roberto ;
Haeser, Gabriel ;
Martinez, J. M. .
OPTIMIZATION, 2011, 60 (05) :627-641
[3]  
[Anonymous], 1990, Classics Appl. Math., DOI DOI 10.1137/1.9781611971309
[4]  
[Anonymous], 2007, Nonsmooth analysis, DOI DOI 10.1007/978-3-540-71333-3
[5]  
Ansari Q. H., 2014, GEN CONVEXITY NONSMO
[6]  
Bazaraa MS., 2013, Nonlinear Programming-Theory and Algorithms
[7]   Regularity conditions in vector optimization [J].
Bigi, G ;
Pappalardo, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 102 (01) :83-96
[8]  
Birgin EG, 2014, FUND ALGORITHMS, P1, DOI 10.1137/1.9781611973365
[9]   Interior-point l2-penalty methods for nonlinear programming with strong global convergence properties [J].
Chen, L. ;
Goldfarb, D. .
MATHEMATICAL PROGRAMMING, 2006, 108 (01) :1-36
[10]   An approximate strong KKT condition for multiobjective optimization [J].
Feng, Min ;
Li, Shengjie .
TOP, 2018, 26 (03) :489-509