A Novel Dynamic Android Malware Detection System With Ensemble Learning

被引:117
|
作者
Feng, Pengbin [1 ,2 ]
Ma, Jianfeng [1 ]
Sun, Cong [1 ]
Xu, Xinpeng [2 ]
Ma, Yuwan [2 ]
机构
[1] Xidian Univ, Sch Cyber Engn, Xian 710071, Shaanxi, Peoples R China
[2] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Shaanxi, Peoples R China
来源
IEEE ACCESS | 2018年 / 6卷
基金
中国国家自然科学基金;
关键词
Android security; dynamic analysis; ensemble learning; Android malware detection;
D O I
10.1109/ACCESS.2018.2844349
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the popularity of Android smartphones, malicious applications targeted Android platform have explosively increased. Proposing effective Android malware detection method for preventing the spread of malware has become an emerging issue. Various features extracted through static and dynamic analysis in conjunction with machine learning algorithm have been the mainstream in large-scale malware identification. In general, static analysis becomes invalid in detecting applications which adopt sophisticated obfuscation techniques like encryption or dynamic code loading. However, dynamic analysis is suitable to deal with these evasion techniques. In this paper, we propose an effective dynamic analysis framework, called EnDroid, in the aim of implementing highly precise malware detection based on multiple types of dynamic behavior features. These features cover system-level behavior trace and common application-level malicious behaviors like personal information stealing, premium service subscription, and malicious service communication. In addition, EnDroid adopts feature selection algorithm to remove noisy or irrelevant features and extracts critical behavior features. Extracting behavior features through runtime monitor, EnDroid is able to distinguish malicious from benign applications with ensemble learning algorithm. Through experiments, we prove the effectiveness of EnDroid on two datasets. Furthermore, we find Stacking achieves the best classification performance and is promising in Android malware detection.
引用
收藏
页码:30996 / 31011
页数:16
相关论文
共 50 条
  • [21] Dynamic Loading Vulnerability Detection for Android Applications Through Ensemble Learning
    Yang Tianchang
    Cui Haoliang
    Niu Shaozhang
    CHINESE JOURNAL OF ELECTRONICS, 2017, 26 (05) : 960 - 965
  • [22] Runtime-based Behavior Dynamic Analysis System for Android Malware Detection
    Min, Luoxu
    Cao, Qinghua
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION APPLICATIONS (ICCIA 2012), 2012, : 233 - 236
  • [23] Static, Dynamic and Intrinsic Features Based Android Malware Detection Using Machine Learning
    Mantoo, Bilal Ahmad
    Khurana, Surinder Singh
    PROCEEDINGS OF RECENT INNOVATIONS IN COMPUTING, ICRIC 2019, 2020, 597 : 31 - 45
  • [24] Deep Learning Based Malware Detection Tool Development for Android Operating System
    Tokmak, Mahmut
    Kucuksille, Ecir Ugur
    Kose, Utku
    BRAIN-BROAD RESEARCH IN ARTIFICIAL INTELLIGENCE AND NEUROSCIENCE, 2021, 12 (04): : 28 - 56
  • [25] IPAnalyzer: A novel Android malware detection system using ranked Intents and Permissions
    Sharma, Yash
    Arora, Anshul
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (33) : 78957 - 79008
  • [26] Malware variants detection based on ensemble learning
    Yan M.
    Donggao D.
    Donggao, Du (dudonggao@126.com); Donggao, Du (dudonggao@126.com), 1600, Beijing University of Posts and Telecommunications (27): : 82 - 90
  • [27] SEdroid: A Robust Android Malware Detector using Selective Ensemble Learning
    Wang, Ji
    Jing, Qi
    Gao, Jianbo
    Qiu, Xuanwei
    2020 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2020,
  • [28] Application of Machine Learning Algorithms for Android Malware Detection
    Kakavand, Mohsen
    Dabbagh, Mohammad
    Dehghantanha, Ali
    2018 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INTELLIGENT SYSTEMS (CIIS 2018), 2018, : 32 - 36
  • [29] Deep learning feature exploration for Android malware detection
    Zhang, Nan
    Tan, Yu-an
    Yang, Chen
    Li, Yuanzhang
    APPLIED SOFT COMPUTING, 2021, 102
  • [30] Feature Importance and Deep Learning for Android Malware Detection
    Talbi, A.
    Viens, A.
    Leroux, L-C
    Francois, M.
    Caillol, M.
    Nguyen, N.
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY (ICISSP), 2021, : 453 - 462