Insight of a Phase Compatible Surface Coating for Long-Durable Li-Rich Layered Oxide Cathode

被引:180
作者
Hu, Sijiang [1 ,2 ]
Li, Yu [3 ]
Chen, Yuhua [3 ]
Peng, Jiming [1 ,3 ]
Zhou, Tengfei [2 ]
Pang, Wei Kong [2 ]
Didier, Christophe [2 ,4 ]
Peterson, Vanessa K. [2 ,4 ]
Wang, Hongqiang [1 ,3 ]
Li, Qingyu [3 ]
Guo, Zaiping [2 ]
机构
[1] Huanggang Normal Univ, Coll Chem & Chem Engn, Hubei Key Lab Proc & Applicat Catalyt Mat, Huanggang 438000, Peoples R China
[2] Univ Wollongong, Sch Mech Mat Mechatron & Biomed Engn, Inst Superconducting & Elect Mat, Wollongong, NSW 2500, Australia
[3] Guangxi Normal Univ, Sch Chem & Pharmaceut Sci, Guangxi Key Lab Low Carbon Energy Mat, Guilin 541004, Peoples R China
[4] Australian Nucl Sci & Technol Org, Australian Ctr Neutron Scattering, Locked Bag 2001, Kirrawee Dc, NSW 2232, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Li-rich layered oxide; lithium-ion batteries; metal ion migration; surface-coating; voltage fade; LITHIUM-ION BATTERIES; HIGH-CAPACITY; METAL-OXIDES; VOLTAGE-FADE; MN; PERFORMANCE; NI; CO; DIFFRACTION; STABILITY;
D O I
10.1002/aenm.201901795
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li-rich layered oxides (LLOs) can deliver almost double the capacity of conventional electrode materials such as LiCoO2 and LiMn2O4; however, voltage fade and capacity degradation are major obstacles to the practical implementation of LLOs in high-energy lithium-ion batteries. Herein, hexagonal La0.8Sr0.2MnO3-y (LSM) is used as a protective and phase-compatible surface layer to stabilize the Li-rich layered Li1.2Ni0.13Co0.13Mn0.54O2 (LM) cathode material. The LSM is Mn-O-M bonded at the LSM/LM interface and functions by preventing the migration of metal ions in the LM associated with capacity degradation as well as enhancing the electrical transfer and ionic conductivity at the interface. The LSM-coated LM delivers an enhanced reversible capacity of 202 mAh g(-1) at 1 C (260 mA g(-1)) with excellent cycling stability and rate capability (94% capacity retention after 200 cycles and 144 mAh g(-1) at 5 C). This work demonstrates that interfacial bonding between coating and bulk material is a successful strategy for the modification of LLO electrodes for the next-generation of high-energy Li-ion batteries.
引用
收藏
页数:10
相关论文
共 61 条
[41]   Enhancing the Kinetics of Li-Rich Cathode Materials through the Pinning Effects of Gradient Surface Na+ Doping [J].
Qing, Ren-Peng ;
Shi, Ji-Lei ;
Xiao, Dong-Dong ;
Zhang, Xu-Dong ;
Yin, Ya-Xia ;
Zhai, Yun-Bo ;
Gu, Lin ;
Guo, Yu-Guo .
ADVANCED ENERGY MATERIALS, 2016, 6 (06)
[42]  
Sathiya M, 2013, NAT MATER, V12, P827, DOI [10.1038/nmat3699, 10.1038/NMAT3699]
[43]   Enhanced cycle stability at high rate and excellent high rate capability of La0.7Sr0.3Mn0.7Co0.3O3-coated LiMn2O4 [J].
Shi, Ting ;
Dong, Yue ;
Wang, Chun-Mei ;
Tao, Fen ;
Chen, Li .
JOURNAL OF POWER SOURCES, 2015, 273 :959-965
[44]   Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides [J].
Shukla, Alpesh Khushalchand ;
Ramasse, Quentin M. ;
Ophus, Colin ;
Duncan, Hugues ;
Hage, Fredrik ;
Chen, Guoying .
NATURE COMMUNICATIONS, 2015, 6
[45]   Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging [J].
Singer, A. ;
Zhang, M. ;
Hy, S. ;
Cela, D. ;
Fang, C. ;
Wynn, T. A. ;
Qiu, B. ;
Xia, Y. ;
Liu, Z. ;
Ulvestad, A. ;
Hua, N. ;
Wingert, J. ;
Liu, H. ;
Sprung, M. ;
Zozulya, A. V. ;
Maxey, E. ;
Harder, R. ;
Meng, Y. S. ;
Shpyrko, O. G. .
NATURE ENERGY, 2018, 3 (08) :641-647
[46]   Long-Life Nickel-Rich Layered Oxide Cathodes with a Uniform Li2ZrO3 Surface Coating for Lithium-Ion Batteries [J].
Song, Bohang ;
Li, Wangda ;
Oh, Seung-Min ;
Manthiram, Arumugam .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (11) :9718-9725
[47]   The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li-Enriched Nickel-Manganese Oxide Electrodes for Li-Ion Batteries [J].
Sun, Yang-Kook ;
Lee, Min-Joon ;
Yoon, Chong S. ;
Hassoun, Jusef ;
Amine, Khalil ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2012, 24 (09) :1192-1196
[48]   Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries [J].
Thackeray, Michael M. ;
Kang, Sun-Ho ;
Johnson, Christopher S. ;
Vaughey, John T. ;
Benedek, Roy ;
Hackney, S. A. .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (30) :3112-3125
[49]   Relationship between chemical bonding nature and electrochemical property of LiMn2O4 spinel oxides with various particle sizes:: "Electrochemical grafting" concept [J].
Treuil, N ;
Labrugère, C ;
Menetrier, M ;
Portier, J ;
Campet, G ;
Deshayes, A ;
Frison, JC ;
Hwang, SJ ;
Song, SW ;
Choy, JH .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (12) :2100-2106
[50]   Excellent stability of spinel LiMn2O4-based cathode materials for lithium-ion batteries [J].
Wang, Hong-Qiang ;
Lai, Fei-Yan ;
Li, Yu ;
Zhang, Xiao-Hui ;
Huang, You-Guo ;
Hu, Si-Jiang ;
Li, Qing-Yu .
ELECTROCHIMICA ACTA, 2015, 177 :290-297