Inverse problems for the phase field system with one observation

被引:3
作者
Baranibalan, N. [2 ]
Sakthivel, K. [1 ]
Balachandran, K. [2 ]
Kim, J. -H. [1 ]
机构
[1] Yonsei Univ, Dept Math, Seoul 120749, South Korea
[2] Bharathiar Univ, Dept Math, Coimbatore 641046, Tamil Nadu, India
关键词
inverse problems; phase field model; Carleman estimate; CARLEMAN ESTIMATE; HEAT-EQUATION; CONTROLLABILITY; COEFFICIENT; TOMOGRAPHY; MODELS;
D O I
10.1080/00036810902890540
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
First we establish a Carleman estimate with a single observation acting on a subdomain for the phase field system in a bounded domain [image omitted] Then this estimate is successfully used along with certain energy estimates to obtain the stability result for the inverse problem consisting of retrieving a smooth diffusion coefficient in the given system for the dimension [image omitted].
引用
收藏
页码:529 / 545
页数:17
相关论文
共 32 条
  • [1] Adams A. R., 1975, Sobolev Spaces
  • [2] [Anonymous], 1981, NONCLASSICAL PROBLEM
  • [3] Local controllability of the phase field system
    Barbu, V
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 50 (03) : 363 - 372
  • [4] An inverse problem for Schrodinger equations with discontinuous main coefficient
    Baudouin, Lucie
    Mercado, Alberto
    [J]. APPLICABLE ANALYSIS, 2008, 87 (10-11) : 1145 - 1165
  • [5] Brezis H., 1983, Analyse fonctionnelle. Theorie et applications, Collection Mathematiques appliquees pour la maitrise
  • [6] Bukhgeim A., 2000, Introduction to the Theory of Inverse Problems
  • [7] Bukhgeim A L., 1981, Soviet Mathematics Doklady, V24, P244
  • [8] CAGINALP G, 1986, ARCH RATION MECH AN, V92, P205
  • [9] Inverse problem for the Schrodinger operator in an unbounded strip
    Cardoulis, L.
    Cristofol, M.
    Gaitan, P.
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2008, 16 (02): : 127 - 146
  • [10] Inverse problems for a 2x2 reaction-diffusion system using a Carleman estimate with one observation
    Cristofol, Michel
    Gaitan, Patricia
    Ramoul, Hichem
    [J]. INVERSE PROBLEMS, 2006, 22 (05) : 1561 - 1573