Need for CT-based bone density modelling in finite element analysis of a shoulder arthroplasty revealed through a novel method for result analysis

被引:11
|
作者
Pomwenger, Werner [1 ,2 ]
Entacher, Karl [3 ]
Resch, Herbert [4 ,5 ]
Schuller-Goetzburg, Peter [2 ]
机构
[1] Salzburg Univ Appl Sci, Dept Informat Technol, A-5412 Puch, Austria
[2] Paracelsus Med Univ, Res Program Prosthet Biomech & Biomat, A-5020 Salzburg, Austria
[3] Salzburg Univ Appl Sci, Dept Informat Technol, A-5412 Puch B Salzburg, Austria
[4] Salzburg Univ Hosp, Dept Trauma Surg, A-5020 Salzburg, Austria
[5] Paracelsus Med Univ, A-5020 Salzburg, Austria
来源
BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK | 2014年 / 59卷 / 05期
基金
奥地利科学基金会;
关键词
bone density modelling; finite element analysis; patient-specific simulation; result analysis; shoulder arthroplasty; GLENOID COMPONENT; COMPUTED-TOMOGRAPHY; CEMENT THICKNESS; CANCELLOUS BONE; STRESS-ANALYSIS; STRENGTH; REPLACEMENT; INTERFACE; STIFFNESS;
D O I
10.1515/bmt-2013-0125
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Treatment of common pathologies of the shoulder complex, such as rheumatoid arthritis and osteoporosis, is usually performed by total shoulder arthroplasty (TSA). Survival of the glenoid component is still a problem in TSA, whereas the humeral component is rarely subject to failure. To set up a finite element analysis (FEA) for simulation of a TSA in order to gain insight into the mechanical behaviour of a glenoid implant, the modelling procedure and the application of boundary conditions are of major importance because the computed result strongly depends upon the accuracy and sense of realism of the model. The goal of this study was to show the influence on glenoid stress distribution of a patient-specific bone density distribution compared with a homogenous bone density distribution for the purpose of generating a valid model in future FEA studies of the shoulder complex. Detailed information on the integration of bone density properties using existing numerical models as well as the applied boundary conditions is provided. A novel approach involving statistical analysis of values derived from an FEA is demonstrated using a cumulative distribution function. The results show well the mechanically superior behaviour of a realistic bone density distribution and therefore emphasise the necessity for patient-specific simulations in biomechanical and medical simulations.
引用
收藏
页码:421 / 430
页数:10
相关论文
共 45 条
  • [1] Individualised, micro CT-based finite element modelling as a tool for biomechanical analysis related to tissue engineering of bone
    Jaecques, SVN
    Van Oosterwyck, H
    Muraru, L
    Van Cleynenbreugel, T
    De Smet, E
    Wevers, M
    Naert, I
    Vander Sloten, J
    BIOMATERIALS, 2004, 25 (09) : 1683 - 1696
  • [2] Prediction of incident vertebral fracture using CT-based finite element analysis
    Allaire, B. T.
    Lu, D.
    Johannesdottir, F.
    Kopperdahl, D.
    Keaveny, T. M.
    Jarraya, M.
    Guermazi, A.
    Bredella, M. A.
    Samelson, E. J.
    Kiel, D. P.
    Anderson, D. E.
    Demissie, S.
    Bouxsein, M. L.
    OSTEOPOROSIS INTERNATIONAL, 2019, 30 (02) : 323 - 331
  • [3] Biomechanical analysis of vertebral wedge deformity in elderly women with quantitative CT-based finite element analysis
    Liu, Jing
    Cheng, Xiaodong
    Wang, Yan
    Zhang, Ping
    Gao, Lei
    Yang, Xingyuan
    He, Shaoqiang
    Liu, Ying
    Zhang, Wei
    BMC MUSCULOSKELETAL DISORDERS, 2022, 23 (01)
  • [4] Design and simulation analysis of Lattice bone plate based on finite element method
    Jia, Dejun
    Li, Fanchun
    Zhang, Cong
    Liu, Kang
    Zhang, Yuan
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2021, 28 (13) : 1311 - 1321
  • [5] Prediction of incident vertebral fracture using CT-based finite element analysis
    B. T. Allaire
    D. Lu
    F. Johannesdottir
    D. Kopperdahl
    T. M. Keaveny
    M. Jarraya
    A. Guermazi
    M. A. Bredella
    E. J. Samelson
    D. P. Kiel
    D. E. Anderson
    S. Demissie
    M. L. Bouxsein
    Osteoporosis International, 2019, 30 : 323 - 331
  • [6] Stress analysis of total hip arthroplasty with a fully hydroxyapatite-coated stem: comparing thermoelastic stress analysis and CT-based finite element analysis
    Watanabe, Ryunosuke
    Mishima, Hajime
    Takehashi, Hironori
    Wada, Hiroshi
    Totsuka, Sho
    Nishino, Tomofumi
    Yamazaki, Masashi
    Hyodo, Koji
    ACTA OF BIOENGINEERING AND BIOMECHANICS, 2021, 24 (02)
  • [7] A Novel Method of Creating Models for Finite Element Analysis Based on CT Scanning Images
    Lin, Liulan
    Zhang, Jiafeng
    Ju, Shaohua
    Tong, Aili
    Fang, Minglin
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF CONTEMPORARY INTELLIGENT COMPUTING TECHNIQUES, 2008, 15 : 216 - 221
  • [8] Biomechanical analysis of vertebral wedge deformity in elderly women with quantitative CT-based finite element analysis
    Jing Liu
    Xiaodong Cheng
    Yan Wang
    Ping Zhang
    Lei Gao
    Xingyuan Yang
    Shaoqiang He
    Ying Liu
    Wei Zhang
    BMC Musculoskeletal Disorders, 23
  • [9] CT-based geometry analysis and finite element models of the human and ovine bronchial tree
    Tawhai, MH
    Hunter, P
    Tschirren, J
    Reinhardt, J
    McLennan, G
    Hoffman, EA
    JOURNAL OF APPLIED PHYSIOLOGY, 2004, 97 (06) : 2310 - 2321
  • [10] Phase-field boundary conditions for the voxel finite cell method: Surface-free stress analysis of CT-based bone structures
    Lam Nguyen
    Stoter, Stein
    Baum, Thomas
    Kirschke, Jan
    Ruess, Martin
    Yosibash, Zohar
    Schillinger, Dominik
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2017, 33 (12)