An infeasible QP-free algorithm without a penalty function or a filter for nonlinear inequality-constrained optimization

被引:6
作者
Liu, Weiai [1 ]
Shen, Chungen [2 ]
Zhu, Xiaojing [1 ]
Pu, Dingguo [1 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[2] Shanghai Finance Univ, Dept Appl Math, Shanghai 201209, Peoples R China
基金
美国国家科学基金会;
关键词
infeasible QP-free method; penalty-function-free; filter-free; working set; global convergence; superlinear convergence; SUPERLINEARLY CONVERGENT ALGORITHM; GLOBALLY CONVERGENT;
D O I
10.1080/10556788.2013.879587
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we present an infeasible quadratic programming-free method without using a penalty function or a filter for inequality-constrained optimization. At each iteration, three linear equations with the same coefficient matrix are solved. Furthermore, the nearly active set technique is used to reduce the amount of computational work. Under mild conditions, we prove that the proposed method has global and superlinear local convergence. At last, preliminary numerical results and comparison are reported.
引用
收藏
页码:1238 / 1260
页数:23
相关论文
共 23 条
  • [1] [Anonymous], 1999, SPRINGER SCI
  • [2] [Anonymous], TRUST REGION METHODS, DOI DOI 10.1137/1.9780898719857
  • [3] [Anonymous], 1995, ACTA NUMER, DOI [DOI 10.1017/S0962492900002518, 10.1017/s0962492900002518]
  • [4] CUTE - CONSTRAINED AND UNCONSTRAINED TESTING ENVIRONMENT
    BONGARTZ, I
    CONN, AR
    GOULD, N
    TOINT, PL
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1995, 21 (01): : 123 - 160
  • [5] A feasible active set QP-free method for nonlinear programming
    Chen, Lifeng
    Wang, Yongli
    He, Guoping
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (02) : 401 - 429
  • [6] Benchmarking optimization software with performance profiles
    Dolan, ED
    Moré, JJ
    [J]. MATHEMATICAL PROGRAMMING, 2002, 91 (02) : 201 - 213
  • [7] On the accurate identification of active constraints
    Facchinei, F
    Fischer, A
    Kanzow, C
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1998, 9 (01) : 14 - 32
  • [8] Facchinei F., 2002, SIAM J OPTIMIZ, V12, P265
  • [9] Inertia-controlling factorizations for optimization algorithms
    Forsgren, A
    [J]. APPLIED NUMERICAL MATHEMATICS, 2002, 43 (1-2) : 91 - 107
  • [10] SNOPT: An SQP algorithm for large-scale constrained optimization (Reprinted from SIAM Journal Optimization, vol 12, pg 979-1006, 2002)
    Gill, PE
    Murray, W
    Saunders, MA
    [J]. SIAM REVIEW, 2005, 47 (01) : 99 - 131