A fuzzy K-nearest neighbor classifier to deal with imperfect data

被引:17
|
作者
Cadenas, Jose M. [1 ]
Carmen Garrido, M. [1 ]
Martinez, Raquel [2 ]
Munoz, Enrique [3 ]
Bonissone, Piero P. [4 ]
机构
[1] Univ Murcia, Dept Informat & Commun Engn, Murcia, Spain
[2] Catholic Univ Murcia, Dept Comp Engn, Murcia, Spain
[3] Univ Milan, Dept Comp Sci, Crema, Italy
[4] Piero P Bonissone Analyt LLC, San Diego, CA USA
关键词
k-nearest neighbors; Classification; Imperfect data; Distance/dissimilarity measures; Combination methods; PERFORMANCE; RULES; ALGORITHMS;
D O I
10.1007/s00500-017-2567-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The k-nearest neighbors method (kNN) is a nonparametric, instance-based method used for regression and classification. To classify a new instance, the kNN method computes its k nearest neighbors and generates a class value from them. Usually, this method requires that the information available in the datasets be precise and accurate, except for the existence of missing values. However, data imperfection is inevitable when dealing with real-world scenarios. In this paper, we present the kNN(imp) classifier, a k-nearest neighbors method to perform classification from datasets with imperfect value. The importance of each neighbor in the output decision is based on relative distance and its degree of imperfection. Furthermore, by using external parameters, the classifier enables us to define the maximum allowed imperfection, and to decide if the final output could be derived solely from the greatest weight class (the best class) or from the best class and a weighted combination of the closest classes to the best one. To test the proposed method, we performed several experiments with both synthetic and real-world datasets with imperfect data. The results, validated through statistical tests, show that the kNN(imp) classifier is robust when working with imperfect data and maintains a good performance when compared with other methods in the literature, applied to datasets with or without imperfection.
引用
收藏
页码:3313 / 3330
页数:18
相关论文
共 50 条
  • [1] A fuzzy K-nearest neighbor classifier to deal with imperfect data
    Jose M. Cadenas
    M. Carmen Garrido
    Raquel Martínez
    Enrique Muñoz
    Piero P. Bonissone
    Soft Computing, 2018, 22 : 3313 - 3330
  • [2] Fuzzy Monotonic K-Nearest Neighbor Versus Monotonic Fuzzy K-Nearest Neighbor
    Zhu, Hong
    Wang, Xizhao
    Wang, Ran
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (09) : 3501 - 3513
  • [3] Hybrid k-Nearest Neighbor Classifier
    Yu, Zhiwen
    Chen, Hantao
    Liu, Jiming
    You, Jane
    Leung, Hareton
    Han, Guoqiang
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (06) : 1263 - 1275
  • [4] A new fuzzy k-nearest neighbor classifier based on the Bonferroni mean
    Kumbure, Mahinda Mailagaha
    Luukka, Pasi
    Collan, Mikael
    PATTERN RECOGNITION LETTERS, 2020, 140 : 172 - 178
  • [5] On Convergence of the Class Membership Estimator in Fuzzy k-Nearest Neighbor Classifier
    Banerjee, Imon
    Mullick, Sankha Subhra
    Das, Swagatam
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2019, 27 (06) : 1226 - 1236
  • [6] Evidential Editing K-Nearest Neighbor Classifier
    Jiao, Lianmeng
    Denoeux, Thierry
    Pan, Quan
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, ECSQARU 2015, 2015, 9161 : 461 - 471
  • [7] Optimization Strategies for the k-Nearest Neighbor Classifier
    Yepdjio Nkouanga H.
    Vajda S.
    SN Computer Science, 4 (1)
  • [8] Generalizing fuzzy k-nearest neighbor classifier using an OWA operator with a RIM quantifier
    Kumbure, Mahinda Mailagaha
    Luukka, Pasi
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 282
  • [9] Microarray Data Classification using Fuzzy K-Nearest Neighbor
    Kumar, Mukesh
    Rath, Santanu Ku
    2014 INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING AND INFORMATICS (IC3I), 2014, : 1032 - 1038
  • [10] An Enhancement of Fuzzy K-Nearest Neighbor Classifier Using Multi-Local Power Means
    Kumbure, Mahinda Mailagaha
    Luukka, Pasi
    Collan, Mikael
    PROCEEDINGS OF THE 11TH CONFERENCE OF THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY (EUSFLAT 2019), 2019, 1 : 83 - 90