The primary aim of this study was to define the secretory dynamics of oxytocin and vasopressin in pituitary venous effluent from ambulatory horses during acute endotoxaemia, a stimulus that may release both hormones. Our secondary aim was to investigate the role of oxytocin in regulating adrenocorticotropic hormone (ACTH) secretion by comparing oxytocin, vasopressin, corticotropin-releasing hormone (CRH) and ACTH secretory profiles during endotoxaemia and by monitoring the ACTH response to oxytocin administration. Pituitary venous blood was collected nonsurgically continuously and divided into 1-min segments from eight follicular phase mares. Four mares were sampled for 30 min before and 3.5 h after receiving an i.v. infusion of bacterial endotoxin (TOX). Four control mares were sampled for 2.5 h without infusion of TOX Another three follicular phase mares were given 5 U of oxytocin to replicate the peak response to TOX and pituitary blood collected every 1 min for 10 min before and 15 min after injection. Endotoxin raised the secretion rates of all hormones measured. All hormones were released episodically throughout the experiment, with TOX increasing the amplitude of peaks in each hormone. Peaks in oxytocin and vasopressin were coincident in each treated mare. Similarly, ACTH peaks were coincident with peaks of oxytocin and vasopressin in each treated mare, and with peaks of CRH in three mares. However, oxytocin administration did not affect ACTH secretion. We conclude that during endotoxaemia in horses: (i) oxytocin and vasopressin are secreted synchronously; (ii) oxytocin is unlikely to be acting as an ACTH secretagogue since inducing peak oxytocin concentrations observed during TOX does not raise ACTH; and therefore (iii) the close relationship between oxytocin and ACTH secretion is circumstantial and due to the fact that oxytocin secretion is concurrent with that of vasopressin, a proven ACTH secretagogue in horses.