AN ESTIMATOR OF THE TAIL INDEX BASED ON INCREMENT RATIO STATISTICS

被引:0
|
作者
Vaiciulis, M. [1 ]
机构
[1] Inst Math & Informat, LT-08663 Vilnius, Lithuania
关键词
central limit theorem; domain of attraction; increment ratio statistic; tail index; INFERENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce an increment ratio statistic (IRN,m) based estimator for estimation of the tail index of a heavy-tailed distribution. For i.i.d. observations depending on the zone of attraction of an alpha-stable law (0 < alpha < 2), the IRN,m statistic converges to a decreasing function L(alpha) as both the sample size N and bandwidth parameter m tend to infinity. We obtain a rate of decay of the bias EIRN,m - L(alpha) and mean square error E(IRN,m - L(alpha))(2). A central limit theorem root N/m(IRN,m - EIRN,m) double right arrow N(0, sigma(2)(alpha)) is also obtained. Monte Carlo simulations show that our tail index estimator has quite good empirical mean square error and, unlike the Hill estimator, is not so sensitive to a change of bandwidth parameter m.
引用
收藏
页码:222 / 233
页数:12
相关论文
共 50 条
  • [41] Semi-parametric regression estimation of the tail index
    Jia, Mofei
    Taufer, Emanuele
    Dickson, Maria Michela
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (01): : 224 - 248
  • [42] Estimation of the tail index for lattice-valued sequences
    Muneya Matsui
    Thomas Mikosch
    Laleh Tafakori
    Extremes, 2013, 16 : 429 - 455
  • [43] Estimation of the tail index in the max-aggregation scheme
    Paulauskas, Vygantas
    Vaiciulis, Marijus
    LITHUANIAN MATHEMATICAL JOURNAL, 2012, 52 (03) : 297 - 315
  • [44] Regression estimators for the tail index
    Amenah AL-Najafi
    László L. Stachó
    László Viharos
    Acta Scientiarum Mathematicarum, 2021, 87 : 649 - 678
  • [45] A Class of Tests on the Tail Index
    Jana Jurečková
    Jan Picek
    Extremes, 2001, 4 (2) : 165 - 183
  • [46] Confidence intervals for the tail index
    Cheng, SH
    Peng, L
    BERNOULLI, 2001, 7 (05) : 751 - 760
  • [47] On the estimation of a changepoint in a tail index
    Gadeikis K.
    Paulauskas V.
    Lithuanian Mathematical Journal, 2005, 45 (3) : 272 - 283
  • [48] A sliding blocks estimator for the extremal index
    Robert, Christian Y.
    Segers, Johan
    Ferro, Christopher A. T.
    ELECTRONIC JOURNAL OF STATISTICS, 2009, 3 : 993 - 1020
  • [49] Extreme value index estimator using maximum likelihood and moment estimation
    Husler, Jurg
    Li, Deyuan
    Raschke, Mathias
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (12) : 3625 - 3636
  • [50] On posterior consistency of tail index for Bayesian kernel mixture models
    Li, Cheng
    Lin, Lizhen
    Dunson, David B.
    BERNOULLI, 2019, 25 (03) : 1999 - 2028