AN ESTIMATOR OF THE TAIL INDEX BASED ON INCREMENT RATIO STATISTICS

被引:0
|
作者
Vaiciulis, M. [1 ]
机构
[1] Inst Math & Informat, LT-08663 Vilnius, Lithuania
关键词
central limit theorem; domain of attraction; increment ratio statistic; tail index; INFERENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce an increment ratio statistic (IRN,m) based estimator for estimation of the tail index of a heavy-tailed distribution. For i.i.d. observations depending on the zone of attraction of an alpha-stable law (0 < alpha < 2), the IRN,m statistic converges to a decreasing function L(alpha) as both the sample size N and bandwidth parameter m tend to infinity. We obtain a rate of decay of the bias EIRN,m - L(alpha) and mean square error E(IRN,m - L(alpha))(2). A central limit theorem root N/m(IRN,m - EIRN,m) double right arrow N(0, sigma(2)(alpha)) is also obtained. Monte Carlo simulations show that our tail index estimator has quite good empirical mean square error and, unlike the Hill estimator, is not so sensitive to a change of bandwidth parameter m.
引用
收藏
页码:222 / 233
页数:12
相关论文
共 50 条
  • [21] Monte Carlo-based tail exponent estimator
    Barunik, Jozef
    Vacha, Lukas
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (21) : 4863 - 4874
  • [22] An estimator for the tail index of an integrated conditional Pareto-Weibull-type model
    Goegebeur, Yuri
    Guillou, Armelle
    Osmann, Michael
    STATISTICS & PROBABILITY LETTERS, 2015, 103 : 8 - 16
  • [23] Bootstrap estimators for the tail-index and for the count statistics of graphex processes
    Naulet, Zacharie
    Roy, Daniel M.
    Sharma, Ekansh
    Veitch, Victor
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 282 - 325
  • [24] The increment ratio statistic under deterministic trends
    Bruzaite, K.
    Vaiciulis, M.
    LITHUANIAN MATHEMATICAL JOURNAL, 2008, 48 (03) : 256 - 269
  • [25] The Increment Ratio statistic under deterministic trends
    K. Bružaitė
    M. Vaičiulis
    Lithuanian Mathematical Journal, 2008, 48
  • [26] An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index
    Dierckx, Goedele
    Goegebeur, Yuri
    Guillou, Armelle
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 121 : 70 - 86
  • [27] Tail prepivoting for the Hill estimator
    Brito, Margarida
    Moreira Freitas, Ana Cristina
    Freitas, Jorge Milhazes
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (19)
  • [28] LOCAL ESTIMATION OF THE HURST INDEX OF MULTIFRACTIONAL BROWNIAN MOTION BY INCREMENT RATIO STATISTIC METHOD
    Bertrand, Pierre Raphael
    Fhima, Mehdi
    Guillin, Arnaud
    ESAIM-PROBABILITY AND STATISTICS, 2013, 17 : 307 - 327
  • [29] Regression estimators for the tail index
    Al-Najafi, Amenah
    Stacho, Laszlo L.
    Viharos, Laszlo
    ACTA SCIENTIARUM MATHEMATICARUM, 2021, 87 (3-4): : 649 - 678
  • [30] Semiparametric Tail Index Regression
    Li, Rui
    Leng, Chenlei
    You, Jinhong
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (01) : 82 - 95