Non-abelian homology of Lie algebras

被引:12
作者
Inassaridze, N
Khmaladze, E
Ladra, M
机构
[1] Georgian Acad Sci, A Razmadze Math Inst, GE-0193 Tbilisi, Georgia
[2] Univ Santiago de Compostela, Fac Math, Dept Algebra, Santiago De Compostela 15782, Spain
关键词
D O I
10.1017/S0017089504001909
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Non-abelian homology of Lie algebras with coefficients in Lie algebras is constructed and studied, generalising the classical Chevalley-Eilenberg homology of Lie algebras. The relationship between cyclic homology and Milnor cyclic homology of non-commutative associative algebras is established in terms of the long exact non-abelian homology sequence of Lie algebras. Some explicit formulae for the second and the third non-abelian homology of Lie algebras are obtained.
引用
收藏
页码:417 / 429
页数:13
相关论文
共 20 条
[1]  
Akca I, 2002, Homol. Homotopy Appl, V4, P43, DOI DOI 10.4310/HHA.2002.V4.N1.A4
[2]  
BARR M, 1969, LECT NOTES MATH, V80, P245
[3]  
Barr M., 1966, P C CAT ALG LA JOLL, P336
[4]  
BROWN R, 1987, P LOND MATH SOC, V54, P176
[5]   VANKAMPEN THEOREMS FOR DIAGRAMS OF SPACES [J].
BROWN, R ;
LODAY, JL .
TOPOLOGY, 1987, 26 (03) :311-335
[6]   PERFECT CROSSED-MODULES IN LIE-ALGEBRAS [J].
CASAS, JM ;
LADRA, M .
COMMUNICATIONS IN ALGEBRA, 1995, 23 (05) :1625-1644
[7]   K2 OF DISCRETE VALUATION RINGS [J].
DENNIS, RK ;
STEIN, MR .
ADVANCES IN MATHEMATICS, 1975, 18 (02) :182-238
[8]   A NON-ABELIAN TENSOR PRODUCT OF LIE-ALGEBRAS [J].
ELLIS, GJ .
GLASGOW MATHEMATICAL JOURNAL, 1991, 33 :101-120
[9]   COHOMOLOGY OF CROSSED LIE-ALGEBRAS AND ADDITIVE MILNORS K-THEORY [J].
GUIN, D .
ANNALES DE L INSTITUT FOURIER, 1995, 45 (01) :93-118
[10]   LINEAR-GROUP HOMOLOGY AND MILNOR K-THEORY FOR RINGS [J].
GUIN, D .
JOURNAL OF ALGEBRA, 1989, 123 (01) :27-59