SWAS-AOS: The first acousto-optical spectrometer in space

被引:6
|
作者
Frerick, J [1 ]
Klumb, M [1 ]
Schieder, R [1 ]
Tolls, V [1 ]
Winnewisser, G [1 ]
机构
[1] Univ Cologne, Inst Phys 1, D-50937 Cologne, Germany
来源
关键词
D O I
10.1117/12.372692
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
On December 5, 1998, the Submillimeter Wave Astronomy Satellite has been launched with a PEGASUS carrier after more than 3 years delay. SWAS is observing molecular line signals (H2O, (CO)-C-13, Cl, O-2, and (H2O)-O-18) from astronomical sources at frequencies between 487 and 557 GHz. SWAS is the first sub-millimeter heterodyne space mission, end, for the spectral analysis of the received signals, it carries the first acousto-optical spectrometer (AOS) in space. The AOS has been build at University of Cologne, and it covers 1.4 GHz bandwidth with approximately 1400 frequency channels. The total weight is 7.5 kg and the power consumption is 5.5 Watts only. The very stable temperature conditions on SWAS allow longtime integrations at total observing times far above 100 hours still with radiometric performance. So fat, the AOS-spectra have not been degraded by particle hits, particularly the CCD detector of the AOS does not exhibit any visible effect due to cosmic rays. SWAS has already observed many interstellar sources in our galaxy. Emission of water is seen to be very abundant, while signals of molecular oxygen seem to be too weak to be observable.
引用
收藏
页码:170 / 179
页数:10
相关论文
共 50 条
  • [31] Acousto-optical spectral technologies
    Pozhar V.E.
    Pustovoit V.I.
    Bulletin of the Russian Academy of Sciences: Physics, 2015, 79 (10) : 1221 - 1226
  • [32] WIDEBAND ACOUSTO-OPTICAL BRAGG CELL DEVELOPMENT FOR A RADIO ASTRONOMY SPECTROMETER.
    Kachwalla, Z.
    Smith, C.J.
    McKay, R.A.
    Journal of Electrical and Electronics Engineering, Australia, 1986, 6 (01): : 22 - 28
  • [33] Composite acousto-optical modulation
    Liu, Ruijuan
    Ma, Yudi
    Ji, Lingjing
    Qiu, Liyang
    Ji, Minbiao
    Tao, Zhensheng
    Wu, Saijun
    OPTICS EXPRESS, 2022, 30 (15): : 27780 - 27793
  • [34] Acousto-optical radiosignal classifier
    Kondakov, SE
    Lopatin, VG
    Chumakov, MI
    Gorelov, NP
    SECOND INTERNATIONAL CONFERENCE ON OPTICAL INFORMATION PROCESSING, 1996, 2969 : 471 - 475
  • [35] NDT BY ACOUSTO-OPTICAL IMAGING
    APRAHAMIAN, R
    BHUTA, PG
    MATERIALS EVALUATION, 1971, 29 (05) : 112 - +
  • [36] The main peculiarities of arranging the optical scheme of acousto-optical spectrometer for the Mexican Large Millimeter Telescope
    Shcherbakov, Alexandre S.
    Mata, Sandra E. Balderas
    Rodriguez, Eduardo Tepichin
    Castellanos, Abraham Luna
    Lucero, Daniel Sanchez
    Maximov, Jewgenij
    LASER BEAM SHAPING VIII, 2007, 6663
  • [37] Acousto-optical Transducer with Surface Plasmons
    A. A. Kolomenskii
    E. Surovic
    H. A. Schuessler
    International Journal of Thermophysics, 2018, 39
  • [38] Acousto-optical multiple interference switches
    Beck, M.
    de Lima, M. M., Jr.
    Wiebicke, E.
    Seidel, W.
    Hey, R.
    Santos, P. V.
    APPLIED PHYSICS LETTERS, 2007, 91 (06)
  • [39] Acousto-optical assessment of skin viscoelasticity
    Kirkpatrick, SJ
    Duncan, DD
    LASER-TISSUE INTERACTION XIV, 2003, 4961 : 209 - 220
  • [40] Integrated acousto-optical temperature sensor
    Sobrinho, C. S.
    Rios, C. S. N.
    Sombra, A. S. B.
    FIBER AND INTEGRATED OPTICS, 2006, 25 (06) : 387 - 402