Homology Requirements and Competition between Gene Conversion and Break-Induced Replication during Double-Strand Break Repair

被引:58
|
作者
Mehta, Anuja [1 ,2 ]
Beach, Annette [1 ,2 ]
Haber, James E. [1 ,2 ]
机构
[1] Brandeis Univ, Dept Biol, Waltham, MA 02454 USA
[2] Brandeis Univ, Rosenstiel Basic Med Sci Res Ctr, Waltham, MA 02454 USA
关键词
DNA END RESECTION; RECOMBINATION EXECUTION CHECKPOINT; CEREVISIAE DONOR PREFERENCE; SACCHAROMYCES-CEREVISIAE; DAMAGE CHECKPOINT; ESCHERICHIA-COLI; RECQ HELICASES; CHROMOSOME-III; SGS1; HELICASE; YEAST;
D O I
10.1016/j.molcel.2016.12.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Saccharomyces cerevisiae mating-type switching is initiated by a double-strand break (DSB) at MATa, leaving one cut end perfectly homologous to the HML alpha donor, while the second end must be processed to remove a non-homologous tail before completing repair by gene conversion (GC). When homology at the matched end is <= 150 bp, efficient repair depends on the recombination enhancer, which tethers HML alpha near the DSB. Thus, homology shorter than an apparent minimum efficient processing segment can be rescued by tethering the donor near the break. When homology at the second end is <= 150 bp, second-end capture becomes inefficient and repair shifts from GC to break-induced replication (BIR). But when pol32 or pif1 mutants block BIR, GC increases 3-fold, indicating that the steps blocked by these mutations are reversible. With short second-end homology, absence of the RecQ helicase Sgs1 promotes gene conversion, whereas deletion of the FANCM-related Mph1 helicase promotes BIR.
引用
收藏
页码:515 / +
页数:15
相关论文
共 50 条
  • [41] DNA Double-Strand Break Repair at-15°C
    Dieser, Markus
    Battista, John R.
    Christner, Brent C.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (24) : 7662 - 7668
  • [42] A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair
    Jain, Suvi
    Sugawara, Neal
    Lydeard, John
    Vaze, Moreshwar
    Le Gac, Nicolas Tanguy
    Haber, James E.
    GENES & DEVELOPMENT, 2009, 23 (03) : 291 - 303
  • [43] Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair
    Davis, Luther
    Maizels, Nancy
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (10) : E924 - E932
  • [44] DNA double-strand break repair pathways, chromosomal rearrangements and cancer
    Kasparek, Torben R.
    Humphrey, Timothy C.
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2011, 22 (08) : 886 - 897
  • [45] The Intriguing Mystery of RPA Phosphorylation in DNA Double-Strand Break Repair
    Fousek-Schuller, Valerie J.
    Borgstahl, Gloria E. O.
    GENES, 2024, 15 (02)
  • [46] Double-strand break repair in bacteria: a view from Bacillus subtilis
    Ayora, Silvia
    Carrasco, Begona
    Cardenas, Paula P.
    Cesar, Carolina E.
    Canas, Cristina
    Yadav, Tribhuwan
    Marchisone, Chiara
    Alonso, Juan C.
    FEMS MICROBIOLOGY REVIEWS, 2011, 35 (06) : 1055 - 1081
  • [47] Meiotic Double-Strand Break Proteins Influence Repair Pathway Utilization
    Macaisne, Nicolas
    Kessler, Zebulin
    Yanowitz, Judith L.
    GENETICS, 2018, 210 (03) : 843 - 856
  • [48] Epigenetic Modifications in Double-Strand Break DNA Damage Signaling and Repair
    Rossetto, Dorine
    Truman, Andrew W.
    Kron, Stephen J.
    Cote, Jacques
    CLINICAL CANCER RESEARCH, 2010, 16 (18) : 4543 - 4552
  • [49] The impact of chromatin on double-strand break repair: Imaging tools and discoveries
    van Bueren, Marit A. E.
    Janssen, Aniek
    DNA REPAIR, 2024, 133
  • [50] The Contribution of Alu Elements to Mutagenic DNA Double-Strand Break Repair
    Morales, Maria E.
    White, Travis B.
    Streva, Vincent A.
    DeFreece, Cecily B.
    Hedges, Dale J.
    Deininger, Prescott L.
    PLOS GENETICS, 2015, 11 (03)