Homology Requirements and Competition between Gene Conversion and Break-Induced Replication during Double-Strand Break Repair

被引:58
|
作者
Mehta, Anuja [1 ,2 ]
Beach, Annette [1 ,2 ]
Haber, James E. [1 ,2 ]
机构
[1] Brandeis Univ, Dept Biol, Waltham, MA 02454 USA
[2] Brandeis Univ, Rosenstiel Basic Med Sci Res Ctr, Waltham, MA 02454 USA
关键词
DNA END RESECTION; RECOMBINATION EXECUTION CHECKPOINT; CEREVISIAE DONOR PREFERENCE; SACCHAROMYCES-CEREVISIAE; DAMAGE CHECKPOINT; ESCHERICHIA-COLI; RECQ HELICASES; CHROMOSOME-III; SGS1; HELICASE; YEAST;
D O I
10.1016/j.molcel.2016.12.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Saccharomyces cerevisiae mating-type switching is initiated by a double-strand break (DSB) at MATa, leaving one cut end perfectly homologous to the HML alpha donor, while the second end must be processed to remove a non-homologous tail before completing repair by gene conversion (GC). When homology at the matched end is <= 150 bp, efficient repair depends on the recombination enhancer, which tethers HML alpha near the DSB. Thus, homology shorter than an apparent minimum efficient processing segment can be rescued by tethering the donor near the break. When homology at the second end is <= 150 bp, second-end capture becomes inefficient and repair shifts from GC to break-induced replication (BIR). But when pol32 or pif1 mutants block BIR, GC increases 3-fold, indicating that the steps blocked by these mutations are reversible. With short second-end homology, absence of the RecQ helicase Sgs1 promotes gene conversion, whereas deletion of the FANCM-related Mph1 helicase promotes BIR.
引用
收藏
页码:515 / +
页数:15
相关论文
共 50 条
  • [31] The Landscape of Mouse Meiotic Double-Strand Break Formation, Processing, and Repair
    Lange, Julian
    Yamada, Shintaro
    Tischfield, Sam E.
    Pan, Jing
    Kim, Seoyoung
    Zhu, Xuan
    Socci, Nicholas D.
    Jasin, Maria
    Keeney, Scott
    CELL, 2016, 167 (03) : 695 - +
  • [32] RADIATION-INDUCED MITOTIC GENE CONVERSION FREQUENCY IN YEAST IS MODULATED BY THE CONDITIONS ALLOWING DNA DOUBLE-STRAND BREAK REPAIR
    FRANKENBERGSCHWAGER, M
    FRANKENBERG, D
    HARBICH, R
    MUTATION RESEARCH, 1994, 314 (01): : 57 - 66
  • [33] TALEN-Induced Double-Strand Break Repair of CTG Trinucleotide Repeats
    Mosbach, Valentine
    Poggi, Lucie
    Viterbo, David
    Charpentier, Marine
    Richard, Guy-Franck
    CELL REPORTS, 2018, 22 (08): : 2146 - 2159
  • [34] Regulation of hetDNA Length during Mitotic Double-Strand Break Repair in Yeast
    Guo, Xiaoge
    Hum, Yee Fang
    Lehner, Kevin
    Jinks-Robertson, Sue
    MOLECULAR CELL, 2017, 67 (04) : 539 - +
  • [35] DNA double-strand break repair and the evolution of intron density
    Farlow, Ashley
    Meduri, Eshwar
    Schloetterer, Christian
    TRENDS IN GENETICS, 2011, 27 (01) : 1 - 6
  • [36] Take a Break to Repair: A Dip in the World of Double-Strand Break Repair Mechanisms Pointing the Gaze on Archaea
    De Falco, Mariarosaria
    De Felice, Mariarita
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (24)
  • [37] DNA double-strand break repair pathway choice and cancer
    Aparicio, Tomas
    Baer, Richard
    Gautier, Jean
    DNA REPAIR, 2014, 19 : 169 - 175
  • [38] DNA double-strand break repair pathway choice in Dictyostelium
    Hsu, Duen-Wei
    Kiely, Rhian
    Couto, C. Anne-Marie
    Wang, Hong-Yu
    Hudson, Jessica J. R.
    Borer, Christine
    Pears, Catherine J.
    Lakin, Nicholas D.
    JOURNAL OF CELL SCIENCE, 2011, 124 (10) : 1655 - 1663
  • [39] DONATION OF INFORMATION TO THE UNBROKEN CHROMOSOME IN DOUBLE-STRAND BREAK REPAIR
    ROITGRUND, C
    STEINLAUF, R
    KUPIEC, M
    CURRENT GENETICS, 1993, 23 (5-6) : 414 - 422
  • [40] The MRN complex in double-strand break repair and telomere maintenance
    Lamarche, Brandon J.
    Orazio, Nicole I.
    Weitzman, Matthew D.
    FEBS LETTERS, 2010, 584 (17) : 3682 - 3695