Improving the SERS signals of biomolecules using a stacked biochip containing Fe2O3/Au nanoparticles and a DC magnetic field

被引:14
作者
Deng, Zu-Yin [1 ]
Chen, Kuen-Lin [1 ]
Wu, Chiu-Hsien [1 ,2 ]
机构
[1] Natl Chung Hsing Univ, Dept Phys, Taichung 402, Taiwan
[2] Natl Chung Hsing Univ, Inst Nanosci, Taichung 402, Taiwan
关键词
GOLD NANOPARTICLES; RAMAN; IMMUNOASSAY; RESONANCE;
D O I
10.1038/s41598-019-45879-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study proposes a magnetic biochip that uses surface-enhanced Raman scattering (SERS) for antigen detection. The biochip was a sandwich structure containing alternating layers of gold and magnetic Fe2O3 nanoparticles. Both single (Au/Fe2O3/Au) and multilayer (Au/Fe2O3/Au/Fe2O3/Au) chips containing Fe2O3 nanoparticles were fabricated to detect bovine serum albumin (BSA). The single-layer chip detected the BSA antigen at a signal-to-noise ratio (SNR) of 5.0. Peaks detected between 1000 and 1500cm(-1) corresponded to various carbon chains. With more Fe2O3 layers, bond resonance was enhanced via the Hall effect. The distribution of electromagnetic field enhancement was determined via SERS. The signal from the single-layer chip containing Au nanoparticles was measured in an external magnetic field. Maximum signal strength was recorded in a field strength of 12.5 gauss. We observed peaks due to other carbon-hydrogen molecules in a 62.5-gauss field. The magnetic field could improve the resolution and selectivity of sample observations.
引用
收藏
页数:8
相关论文
共 23 条
[11]   Femtosecond Stimulated Raman Exposes the Role of Vibrational Coherence in Condensed-Phase Photoreactivity [J].
Hoffman, David P. ;
Mathies, Richard A. .
ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (04) :616-625
[12]  
HORIBA Jobin Yvon, RAM SPECTR AN MON AP
[13]   Single molecule detection using surface-enhanced Raman scattering (SERS) [J].
Kneipp, K ;
Wang, Y ;
Kneipp, H ;
Perelman, LT ;
Itzkan, I ;
Dasari, R ;
Feld, MS .
PHYSICAL REVIEW LETTERS, 1997, 78 (09) :1667-1670
[14]   Plasmonic nanocarrier grid-enhanced Raman sensor for studies of anticancer drug delivery [J].
Kurzqtkowska, Katarzyna ;
Santiago, Ty ;
Hepel, Maria .
BIOSENSORS & BIOELECTRONICS, 2017, 91 :780-787
[15]   A virus-based nanoplasmonic structure as a surface-enhanced Raman biosensor [J].
Lebedev, Nikolai ;
Griva, Igor ;
Dressick, Walter J. ;
Phelps, Jamie ;
Johnson, John E. ;
Meshcheriakova, Yulia ;
Lomonossoff, George P. ;
Soto, Carissa M. .
BIOSENSORS & BIOELECTRONICS, 2016, 77 :306-314
[16]   Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging [J].
Lee, Sangyeop ;
Chon, Hyangah ;
Lee, Jiyoung ;
Ko, Juhui ;
Chung, Bong Hyun ;
Lim, Dong Woo ;
Choo, Jaebum .
BIOSENSORS & BIOELECTRONICS, 2014, 51 :238-243
[17]   Compact Magnetic Antennas for Directional Excitation of Surface Plasmons [J].
Liu, Yongmin ;
Palomba, Stefano ;
Park, Yongshik ;
Zentgraf, Thomas ;
Yin, Xiaobo ;
Zhang, Xiang .
NANO LETTERS, 2012, 12 (09) :4853-4858
[18]   Review of SERS Substrates for Chemical Sensing [J].
Mosier-Boss, Pamela A. .
NANOMATERIALS, 2017, 7 (06)
[19]   Surface-enhanced Raman scattering (SERS) detection of multiple viral antigens using magnetic capture of SERS-active nanoparticles [J].
Neng, Jing ;
Harpster, Mark H. ;
Wilson, William C. ;
Johnson, Patrick A. .
BIOSENSORS & BIOELECTRONICS, 2013, 41 :316-321
[20]   Optical Hall effect-model description: tutorial [J].
Schubert, Mathias ;
Kuhne, Philipp ;
Darakchieva, Vanya ;
Hofmann, Tino .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2016, 33 (08) :1553-1568