A New Upper Bound for Laplacian Graph Eigenvalues

被引:0
作者
Hu, Shengbiao [1 ]
机构
[1] Qinghai Nationalities Coll, Dept Math, Xinig 810007, Qinghai, Peoples R China
来源
INTERNATIONAL ELECTRONIC CONFERENCE ON COMPUTER SCIENCE | 2008年 / 1060卷
关键词
Laplacian matrix; Laplacian eigenvalues; upper bound;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Let G= (V, E) be a graph with vertex set V = {v(1), v(2), ..., v(n)}. The degree of vi and the average degree of the adjacent vertices of vi are denoted by d(i) and m(vi), respectively. In this paper, we prove that max{d(v)m(v)/d(u) + d(u)m(u)/d(v) : uv is an element of E} is an upper bound for the largest Laplacian eigenvalue of G, the equality holds if G is a d-regular bipartite graph.
引用
收藏
页码:298 / 301
页数:4
相关论文
共 8 条
[1]  
Anderson W. N., 1985, Linear Multilinear Algebra, V18, P141, DOI [10.1080/03081088508817681, DOI 10.1080/03081088508817681]
[2]  
Berman A, 1979, NONNEGATIVE MATRIX M
[3]  
Brualdi R. A., 1991, COMBINATORIAL MATRIX, V39
[4]   On the Laplacian eigenvalues of a graph [J].
Li, JS ;
Zhang, XD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 285 (1-3) :305-307
[5]  
Li JS, 1997, LINEAR ALGEBRA APPL, V265, P93
[6]   A note on Laplacian graph eigenvalues [J].
Merris, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 285 (1-3) :33-35
[7]   An always nontrivial upper bound for Laplacian graph eigenvalues [J].
Rojo, O ;
Soto, R ;
Rojo, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 312 (1-3) :155-159
[8]   A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph [J].
Shu, JL ;
Hong, Y ;
Wen-Ren, K .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 347 (1-3) :123-129