ROBUSTNESS OF DIFFERENT FEATURES FOR ONE-CLASS CLASSIFICATION AND ANOMALY DETECTION IN WIRE ROPES

被引:0
|
作者
Platzer, Esther-Sabrina [1 ]
Denzler, Joachim [1 ]
Suesse, Herbert [1 ]
Naegele, Josef [2 ]
Wehking, Karl-Heinz [2 ]
机构
[1] Univ Jena, Chair Comp Vis, Ernsi Abbe Pl 2, D-00743 Jena, Germany
[2] Univ Stuttgart, Inst Mech Handling & Logist, D-70174 Stuttgart, Germany
关键词
Anomaly detection; Novelty detection; One-class classification; Linear prediction; Local binary pattern; DEFECT DETECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic visual inspection of wire ropes is an important but challenging task. Anomalies in wire ropes usually are unobtrusive and their detection is a difficult job. Certainly, a reliable anomaly detection is essential to assure the safety of the ropes. A one-class classification approach for the automatic detection of anomalies in wire ropes is presented. Different well-established features from the field of textural defect detection are compared to context-sensitive features extracted by linear prediction. They are used to learn a Gaussian mixture model which represents the faultless rope structure. Outliers are regarded as anomaly. To evaluate the robustness of the method, a training set containing intentionally added, defective samples is used. The generalization ability of the learned model, which is important for practical life, is exploited by testing the model on different data sets from identically constructed ropes. All experiments were performed on real-life rope data. The results prove a high generalization ability, as well as a good robustness to outliers in the training set. The presented approach can exclude up to 90 percent of the rope as faultless without missing one single defect.
引用
收藏
页码:171 / +
页数:2
相关论文
共 50 条
  • [31] An anomaly detection system based on variable N-gram features and one-class SVM
    Khreich, Wael
    Khosravifar, Babak
    Hamou-Lhadj, Abdelwahab
    Talhi, Chamseddine
    INFORMATION AND SOFTWARE TECHNOLOGY, 2017, 91 : 186 - 197
  • [32] Anomaly Detection Using Signal Segmentation and One-Class Classification in Diffusion Process of Semiconductor Manufacturing
    Chang, Kyuchang
    Yoo, Youngji
    Baek, Jun-Geol
    SENSORS, 2021, 21 (11)
  • [33] Resampling approach for one-Class classification; Resampling approach for one-Class classification
    Lee H.-H.
    Park S.
    Im J.
    Pattern Recognition, 2023, 143
  • [34] ONE-CLASS SUPPORT VECTOR MACHINES APPROACH TO ANOMALY DETECTION
    Hejazi, Maryamsadat
    Singh, Yashwant Prasad
    APPLIED ARTIFICIAL INTELLIGENCE, 2013, 27 (05) : 351 - 366
  • [35] Latent Feature Decentralization Loss for One-Class Anomaly Detection
    Hong, Eungi
    Choe, Yoonsik
    IEEE ACCESS, 2020, 8 : 165658 - 165669
  • [36] Evaluation of one-class algorithms for anomaly detection in home networks
    de Melo, Pedro H. A. D.
    Martins de Resende, Adriano Araujo
    Miani, Rodrigo Sanches
    Rosa, Pedro Frosi
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 682 - 689
  • [37] Deep Contrastive One-Class Time Series Anomaly Detection
    Wang, Rui
    Liu, Chongwei
    Mou, Xudong
    Gao, Kai
    Guo, Xiaohui
    Liu, Pin
    Wo, Tianyu
    Liu, Xudong
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 694 - 702
  • [38] GODS: Generalized One-class Discriminative Subspaces for Anomaly Detection
    Wang, Jue
    Cherian, Anoop
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 8200 - 8210
  • [39] ODD: ONE-CLASS ANOMALY DETECTION VIA THE DIFFUSION MODEL
    Wang, He
    Dai, Longquan
    Tong, Jinglin
    Zhai, Yan
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 3000 - 3004
  • [40] Video Anomaly Detection using Ensemble One-class Classifiers
    Li, Gang
    Feng, Zuren
    Lv, Na
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 9343 - 9349