Homoclinic attractors in discontinuos iterated function systems

被引:4
作者
Lesniak, Krzysztof [1 ]
机构
[1] Nicolaus Copernicus Univ Torun, Fac Math & Comp Sci, PL-87100 Torun, Poland
关键词
Iterated function system; Strict attractor; Hutchinson operator; Invariant set; Fast basin; FRACTALS; TIME;
D O I
10.1016/j.chaos.2015.09.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Iterated function systems which consist of discontinuous maps are shown to be able to have attractors in the sense of Hutchinson. Moreover, it is demonstrated that discontinuous systems often admit strict attractors which are non-invariant, so one can call them homoclinic attractors. The existence of such attractors relates to the notion of a fast basin. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:146 / 149
页数:4
相关论文
共 22 条
[1]  
[Anonymous], B POL ACAD SCI MATH
[2]  
Barnsley MF, 2014, ARXIV13084230V1, V2, P2013
[3]  
Barnsley MF, RECENT PROGR GEN TOP, P69
[4]   The entropy of a special overlapping dynamical system [J].
Barnsley, Michael ;
Harding, Brendan ;
Vince, Andrew .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 :483-500
[5]   The Chaos Game on a General Iterated Function System from a Topological Point of View [J].
Barnsley, Michael F. ;
Lesniak, Krzysztof .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (11)
[6]   Fractal Continuation [J].
Barnsley, Michael F. ;
Vince, Andrew .
CONSTRUCTIVE APPROXIMATION, 2013, 38 (02) :311-337
[7]   METRIC SPACE-TIME AS FIXED-POINT OF THE RENORMALIZATION-GROUP EQUATIONS ON FRACTAL STRUCTURES [J].
ENGLERT, F ;
FRERE, JM ;
ROOMAN, M ;
SPINDEL, P .
NUCLEAR PHYSICS B, 1987, 280 (01) :147-180
[8]  
Granas A., 2003, Fixed Point Theory, DOI DOI 10.1007/978-0-387-21593-8
[9]  
Hu S., 1997, Handbook of Multivalued Analysis, VI
[10]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747