Metal-insulator transition in the Hubbard model

被引:0
作者
Montorsi, A [1 ]
Rasetti, M [1 ]
机构
[1] POLITECN TORINO, UNITA INFM, I-10129 TURIN, ITALY
来源
MODERN PHYSICS LETTERS B | 1996年 / 10卷 / 18期
关键词
D O I
10.1142/S0217984996000985
中图分类号
O59 [应用物理学];
学科分类号
摘要
We study the metal-insulator transition of the d-dimensional Hubbard model by treating the hopping term between adjacent 1-d chains in the frame of a Clifford linearization scheme, and keeping the full model along the chains. A general equation for the critical point is worked out in terms of the correlation functions of the one-dimensional model, assuming that the transition is of the second order. The equation, which holds at any temperature, is here investigated especially at T = 0, where the latter condition holds true. The solution shows the existence of an insulating ground state in any d only at half-filling for U strictly positive, as in the exact 1-d case. The transition is found to be related to a parameter reminiscent of entropy.
引用
收藏
页码:863 / 871
页数:9
相关论文
共 24 条
[11]   SLAVE-BOSON MEAN FIELD VERSUS QUANTUM MONTE-CARLO RESULTS FOR THE HUBBARD-MODEL [J].
LILLY, L ;
MURAMATSU, A ;
HANKE, W .
PHYSICAL REVIEW LETTERS, 1990, 65 (11) :1379-1382
[13]  
METHA ML, 1976, J PHYS A, V9, P197
[14]   METAL-INSULATOR-TRANSITION IN A GENERALIZED HUBBARD-MODEL [J].
MICHIELSEN, K ;
DERAEDT, H ;
SCHNEIDER, T .
PHYSICAL REVIEW LETTERS, 1992, 68 (09) :1410-1413
[15]   CRITICAL-BEHAVIOR NEAR THE MOTT TRANSITION IN THE HUBBARD-MODEL [J].
MOELLER, G ;
SI, QM ;
KOTLIAR, G ;
ROZENBERG, M .
PHYSICAL REVIEW LETTERS, 1995, 74 (11) :2082-2085
[16]   INTERACTING-ELECTRON MODEL EXACTLY SOLVABLE IN ANY DIMENSION [J].
MONTORSI, A ;
RASETTI, M .
PHYSICAL REVIEW LETTERS, 1991, 66 (11) :1383-1387
[17]   EXACTNESS OF FERMIONIC LINEARIZATION SCHEME WITH CLIFFORD VARIABLES IN D=INFINITY [J].
MONTORSI, A .
MODERN PHYSICS LETTERS B, 1995, 9 (16) :971-975
[18]   FERMI LINEARIZATION SCHEME FOR ITINERANT ELECTRONS WITH CLIFFORD VARIABLES [J].
MONTORSI, A ;
PELIZZOLA, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (22) :5815-5822
[19]  
MOUTORSI A, 1989, INT J MOD PHYS B, V3, P247
[20]  
Muller Hartman E., 1989, Z PHYS B, V76, P21