Non-Markovian Stochastic Epidemics in Extremely Heterogeneous Populations

被引:3
作者
House, T. [1 ]
机构
[1] Univ Warwick, Warwick Math Inst, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Zipf; Sellke; SIR; SCALE-FREE NETWORKS; DYNAMICS; TRANSMISSION; DISEASES;
D O I
10.1051/mmnp/20149210
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A feature often observed in epidemiological networks is significant heterogeneity in degree. A popular modelling approach to this has been to consider large populations with highly heterogeneous discrete contact rates. This paper defines an individual-level non-Markovian stochastic process that converges on standard ODE models of such populations in the appropriate asymptotic limit. A generalised Sellke construction is derived fir this model, and this is then used to consider final outcomes in the case where heterogeneity follows a truncated Zipf distribution.
引用
收藏
页码:153 / 160
页数:8
相关论文
共 24 条
[1]  
ANDERSON R M, 1991
[2]  
[Anonymous], 2000, SPRINGER LECT NOTES
[3]  
[Anonymous], 2007, Random Graph Dynamics
[4]   When individual behaviour matters: homogeneous and network models in epidemiology [J].
Bansal, Shweta ;
Grenfell, Bryan T. ;
Meyers, Lauren Ancel .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2007, 4 (16) :879-891
[5]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[6]  
Berger N, 2005, P 16 S DISCR ALG
[7]   Power-Law Distributions in Empirical Data [J].
Clauset, Aaron ;
Shalizi, Cosma Rohilla ;
Newman, M. E. J. .
SIAM REVIEW, 2009, 51 (04) :661-703
[8]  
Danon L., 2011, Interdisciplinary Perspectives on Infectious Diseases, V2011, P284909, DOI 10.1155/2011/284909
[9]   Social encounter networks: collective properties and disease transmission [J].
Danon, Leon ;
House, Thomas A. ;
Read, Jonathan M. ;
Keeling, Matt J. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2012, 9 (76) :2826-2833
[10]  
DIEKMANN O, 1990, J MATH BIOL, V28, P365