Li/Fe substitution in Li-rich Ni, Co, Mn oxides for enhanced electrochemical performance as cathode materials

被引:34
作者
Billaud, Juliette [1 ]
Sheptyakov, Denis [2 ]
Sallard, Sebastien [1 ,3 ]
Leanza, Daniela [1 ]
Talianker, Michael [4 ]
Grinblat, Judith [5 ]
Sclar, Hadar [5 ]
Aurbach, Doron [5 ]
Novak, Petr [1 ]
Villevieille, Claire [1 ]
机构
[1] Paul Scherrer Inst, Energy & Environm Res Div, CH-5232 Villigen, Switzerland
[2] Paul Scherrer Inst, Lab Neutron Scattering & Imaging, CH-5232 Villigen, Switzerland
[3] Flemish Inst Technol Res VITO, Bat MAT,Boeretang 200, B-2400 Mol, Belgium
[4] Ben Gurion Univ Negev, Dept Mat Engn, IL-84105 Beer Sheva, Israel
[5] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
关键词
SITU X-RAY; LAYERED OXIDES; CYCLING STABILITY; ANIONIC REDOX; LITHIUM BATTERIES; OXYGEN RELEASE; ELECTRODES; CAPACITY; SURFACE; LI2MNO3;
D O I
10.1039/c9ta00399a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li-rich nickel cobalt manganese (NCM) oxides are among the most promising cathode materials for lithium-ion batteries owing to their high specific charges and operating voltages. However, their crystal structures are unstable upon prolonged cycling, leading to a collapse of their electrochemical performance. In this study, we investigated Fe doping of Li-rich NCM materials and explored various Li/Fe ratios. Compared with the reference Li-rich NCM material, the Li-1.16(Ni0.18Co0.10Mn0.52Fe0.02)O-2 composition exhibited a higher specific charge, potential drop mitigation at fast cycling rates, and an enhanced rate capability. At a rate of 4C, this composition exhibited a specific charge of 150 mA h g(-1), which was as much as 50% higher than that of the reference (100 mA h g(-1)). Neutron and X-ray diffraction data for compounds with different Fe doping concentrations indicated that the crystallographic structure was preserved with up to 2 mol% Fe without the formation of separate impurity phases. Furthermore, we found that the crystal structure of this Fe-doped material was less susceptible to the effects of prolonged cycling than the reference compound. Complementary investigations with X-ray photoelectron spectroscopy revealed that Fe was electrochemically active in the structure, which explains the beneficial effects observed with Fe doping of Li-rich NCM materials, such as an increased specific charge and more stable cycling.
引用
收藏
页码:15215 / 15224
页数:10
相关论文
共 50 条
  • [21] Effect of Al and Fe Doping on the Electrochemical Behavior of Li1.2Ni0.133Mn0.534Co0.133O2 Li-Rich Cathode Material
    Medvedeva, Anna
    Makhonina, Elena
    Pechen, Lidia
    Politov, Yury
    Rumyantsev, Aleksander
    Koshtyal, Yury
    Goloveshkin, Alexander
    Maslakov, Konstantin
    Eremenko, Igor
    MATERIALS, 2022, 15 (22)
  • [22] Impact of surface coating on electrochemical and thermal behaviors of a Li-rich Li1.2Ni0.16Mn0.56Co0.08O2 cathode
    Nisar, Umair
    Petla, Ramesh
    Jassim Al-Hail, Sara Ahmad
    Quddus, Aisha Abdul
    Monawwar, Haya
    Shakoor, Abdul
    Essehli, Rachid
    Amin, Ruhul
    RSC ADVANCES, 2020, 10 (26) : 15274 - 15281
  • [23] Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material
    Wang, Dan
    Huang, Yan
    Huo, Zhenqing
    Chen, Li
    ELECTROCHIMICA ACTA, 2013, 107 : 461 - 466
  • [24] Enhanced electrochemical performance of Li-rich cathode Li1.2Ni0.2Mn0.6O2 by surface modification with WO3 for lithium ion batteries
    Mu, Kunchang
    Cao, Yanbing
    Hu, Guorong
    Du, Ke
    Yang, Hao
    Gan, Zhanggen
    Peng, Zhongdong
    ELECTROCHIMICA ACTA, 2018, 273 : 88 - 97
  • [25] Enhanced electrochemical performance of perovskite LaNiO3 coating on Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries
    Zhang, Xiaodong
    Hao, Junjie
    Wu, Licheng
    Guo, Zhimeng
    Ji, Zhenhui
    Luo, Ji
    Chen, Cunguang
    Shu, Jinfeng
    Long, Haiming
    Yang, Fang
    Volinsky, Alex A.
    ELECTROCHIMICA ACTA, 2018, 283 : 1203 - 1212
  • [26] Enhanced electrochemical performance of Li-rich cathode material for lithium-ion batteries
    Xiao, Jun
    Li, Xiao
    Tang, Kaikai
    Long, Mengqi
    Chen, Jun
    Wang, Dandan
    Gao, Hong
    Liu, Hao
    SURFACE INNOVATIONS, 2022, 10 (02) : 119 - 127
  • [27] Redox Evolution of Li-Rich Layered Cathode Materials
    Fang, Liang
    Chen, Mingzhe
    Nam, Kyung-Wan
    Kang, Yong-Mook
    BATTERIES-BASEL, 2022, 8 (10):
  • [28] Roles of Mn and Ni in Li-rich Mn-Ni-Fe oxide cathodes
    Aryal, Shankar
    Kucuk, Kamil
    Timofeeva, Elena, V
    Segre, Carlo U.
    MATERIALS TODAY COMMUNICATIONS, 2021, 26
  • [29] Synergy effects on blending Li-rich and classical layered cathode oxides with improved electrochemical performance
    Cui, Hongfu
    Yin, Chong
    Xia, Yonggao
    Wei, Chenggang
    Jiang, Wei
    Sun, Jie
    Qiu, Bao
    Zhu, Mingyuan
    Liu, Zhaoping
    CERAMICS INTERNATIONAL, 2019, 45 (12) : 15097 - 15107
  • [30] Facile synthesis of porous Li-rich layered Li[Li0.2Mn0.534Ni0.133Co0.133]O2 as high-performance cathode materials for Li-ion batteries
    Cao, Chenwei
    Xi, Liujiang
    Leung, Kwan Lan
    Wang, Man
    Liu, Ying
    Ma, Ruguang
    Yang, Shiliu
    Lu, Zhouguang
    Chung, C. Y.
    RSC ADVANCES, 2015, 5 (39): : 30507 - 30513