Imbalanced Class Learning in Epigenetics

被引:13
作者
Haque, M. Muksitul [1 ,2 ]
Skinner, Michael K. [1 ]
Holder, Lawrence B. [2 ]
机构
[1] Washington State Univ, Sch Biol Sci, Ctr Reprod Biol, Pullman, WA 99164 USA
[2] Washington State Univ, Sch Elect Engn & Comp Sci, Pullman, WA 99164 USA
关键词
biology; computational molecular biology; DNA; genomics; machine earning; TRANSGENERATIONAL INHERITANCE; CLASSIFICATION; DISEASE; TARGETS;
D O I
10.1089/cmb.2014.0008
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In machine learning, one of the important criteria for higher classification accuracy is a balanced dataset. Datasets with a large ratio between minority and majority classes face hindrance in learning using any classifier. Datasets having a magnitude difference in number of instances between the target concept result in an imbalanced class distribution. Such datasets can range from biological data, sensor data, medical diagnostics, or any other domain where labeling any instances of the minority class can be time-consuming or costly or the data may not be easily available. The current study investigates a number of imbalanced class algorithms for solving the imbalanced class distribution present in epigenetic datasets. Epigenetic (DNA methylation) datasets inherently come with few differentially DNA methylated regions (DMR) and with a higher number of non-DMR sites. For this class imbalance problem, a number of algorithms are compared, including the TAN+AdaBoost algorithm. Experiments performed on four epigenetic datasets and several known datasets show that an imbalanced dataset can have similar accuracy as a regular learner on a balanced dataset.
引用
收藏
页码:492 / 507
页数:16
相关论文
共 52 条
[1]  
Bache K., 2013, UCI Machine Learning Repository
[2]   SRY Induced TCF21 Genome-Wide Targets and Cascade of bHLH Factors During Sertoli Cell Differentiation and Male Sex Determination in Rats [J].
Bhandari, Ramji K. ;
Schinke, Ellyn N. ;
Haque, Md. M. ;
Sadler-Riggleman, Ingrid ;
Skinner, Michael K. .
BIOLOGY OF REPRODUCTION, 2012, 87 (06)
[3]   Global Genome Analysis of the Downstream Binding Targets of Testis Determining Factor SRY and SOX9 [J].
Bhandari, Ramji K. ;
Haque, Md. M. ;
Skinner, Michael K. .
PLOS ONE, 2012, 7 (09)
[4]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[5]   Computational epigenetics [J].
Bock, Christoph ;
Lengauer, Thomas .
BIOINFORMATICS, 2008, 24 (01) :1-10
[6]  
Chan P. K., 1998, Proceedings Fourth International Conference on Knowledge Discovery and Data Mining, P164
[7]  
Chawla N. V., 2004, ACM SIGKDD Explorations Newsletter, V6, P1
[8]  
Chawla N.V., 2011, SMOTE: Synthetic minority over-sampling technique
[9]   Tissue-specific TAFs counteract polycomb to turn on terminal differentiation [J].
Chen, X ;
Hiller, M ;
Sancak, Y ;
Fuller, MT .
SCIENCE, 2005, 310 (5749) :869-872
[10]   Combating imbalance in network intrusion datasets [J].
Cieslak, David A. ;
Chawla, Nitesh V. ;
Striegel, Aaron .
2006 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, 2006, :732-+