Point symmetries of the Euler-Lagrange equations

被引:0
|
作者
Torres del Castillo, G. F. [1 ]
机构
[1] Univ Autonoma Puebla, Dept Fis Matemat, Inst Ciencias, Puebla 72570, Pue, Mexico
关键词
Lagrangians; symmetries; equivalent Lagrangians; constants of motion; Hamiltonian formalism;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give an elementary derivation of the equations for the point symmetries of the Euler-Lagrange equations for a Lagrangian of a system with a finite number of degrees of freedom. We show that given a divergence symmetry of a Lagrangian, there exists an equivalent Lagrangian that is strictly invariant under that transformation. The corresponding description in the Hamiltonian formalism is also investigated.
引用
收藏
页码:129 / 135
页数:7
相关论文
共 50 条
  • [41] Theorem on the existence and uniqueness of the solution to Euler-Lagrange equations
    Zhao, Wei-Jia
    Pan, Zhen-Kuan
    Chen, Li-Qun
    Gongcheng Shuxue Xuebao/Chinese Journal of Engineering Mathematics, 2003, 20 (03):
  • [42] EULER-LAGRANGE EQUATIONS FOR FUNCTIONALS DEFINED ON FRECHET MANIFOLDS
    Antonio Vallejo, Jose
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2009, 16 (04) : 443 - 454
  • [43] Removable singularities of the Euler-Lagrange equations on a Hilbert manifold
    Pnevmatikos, S
    Pliakis, D
    Andreadis, I
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (08): : 877 - 882
  • [44] FROM EULER-LAGRANGE EQUATIONS TO CANONICAL NONLINEAR CONNECTIONS
    Neagu, Mircea
    ARCHIVUM MATHEMATICUM, 2006, 42 (03): : 255 - 263
  • [45] Variational problems with fractional derivatives: Euler-Lagrange equations
    Atanackovic, T. M.
    Konjik, S.
    Pilipovic, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (09)
  • [46] Existence of a weak solution for fractional Euler-Lagrange equations
    Bourdin, Loic
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 399 (01) : 239 - 251
  • [47] AV-differential geometry: Euler-Lagrange equations
    Grabowska, Katarzyna
    Grabowski, Janusz
    Urbanski, Pawel
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (10) : 1984 - 1998
  • [48] EULER-LAGRANGE RADICAL FUNCTIONAL EQUATIONS WITH SOLUTION AND STABILITY
    Ramdoss, Murali
    Pachaiyappan, Divyakumari
    Dutta, Hemen
    MISKOLC MATHEMATICAL NOTES, 2020, 21 (01) : 351 - 365
  • [49] On exact solutions of a class of fractional Euler-Lagrange equations
    Baleanu, Dumitru
    Trujillo, Juan J.
    NONLINEAR DYNAMICS, 2008, 52 (04) : 331 - 335
  • [50] Elementary work, Newton law and Euler-Lagrange equations
    Udriste, Constantin
    Dogaru, Oltin
    Tevy, Ionel
    Bala, Dumitru
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2010, 15 (02): : 100 - 107