Point symmetries of the Euler-Lagrange equations

被引:0
|
作者
Torres del Castillo, G. F. [1 ]
机构
[1] Univ Autonoma Puebla, Dept Fis Matemat, Inst Ciencias, Puebla 72570, Pue, Mexico
关键词
Lagrangians; symmetries; equivalent Lagrangians; constants of motion; Hamiltonian formalism;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give an elementary derivation of the equations for the point symmetries of the Euler-Lagrange equations for a Lagrangian of a system with a finite number of degrees of freedom. We show that given a divergence symmetry of a Lagrangian, there exists an equivalent Lagrangian that is strictly invariant under that transformation. The corresponding description in the Hamiltonian formalism is also investigated.
引用
收藏
页码:129 / 135
页数:7
相关论文
共 50 条
  • [1] Variational C∞-symmetries and Euler-Lagrange equations
    Muriel, C
    Romero, JL
    Olver, PJ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 222 (01) : 164 - 184
  • [2] On the commutator of C∞-symmetries and the reduction of Euler-Lagrange equations
    Ruiz, A.
    Muriel, C.
    Olver, P. J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (14)
  • [3] Canonical form of Euler-Lagrange equations and gauge symmetries
    Geyer, B
    Gitman, DM
    Tyutin, IV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (23): : 6587 - 6609
  • [4] Variational λ-symmetries and exact solutions to Euler-Lagrange equations lacking standard symmetries
    Ruiz Servan, Adrian
    Muriel Patino, Maria Concepcion
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (17) : 10946 - 10958
  • [5] On the generalized Euler-Lagrange equations
    Chen, JW
    Lai, HC
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 213 (02) : 681 - 697
  • [6] EULER-LAGRANGE EQUATIONS ON CANTOR SETS
    Baleanu, Dumitru
    Yang, Xiao-Jun
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2013, VOL 4, 2014,
  • [7] On the global version of Euler-Lagrange equations
    Saraví, REG
    Solomin, JE
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (26): : 7301 - 7305
  • [8] Fractional Euler-Lagrange equations revisited
    Herzallah, Mohamed A. E.
    Baleanu, Dumitru
    NONLINEAR DYNAMICS, 2012, 69 (03) : 977 - 982
  • [9] On a class of special Euler-Lagrange equations
    Yan, Baisheng
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023,
  • [10] On the Equivalence of Euler-Lagrange and Noether Equations
    A. C. Faliagas
    Mathematical Physics, Analysis and Geometry, 2016, 19