Sobolev, Poincare, and isoperimetric inequalities for subelliptic diffusion operators satisfying a generalized curvature dimension inequality

被引:13
作者
Baudoin, Fabrice [1 ]
Kim, Bumsik [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
Sobolev inequalities; isoperimetric inequality; Poincare inequality; subelliptic operator; 1ST EIGENVALUE;
D O I
10.4171/RMI/771
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By adapting some ideas of M. Ledoux ([12], [13] and [14]) to a sub-Riemannian framework we study Sobolev, Poincare and isoperimetric inequalities associated to subelliptic diffusion operators that satisfy the generalized curvature dimension inequality that was introduced by F. Baudoin and N. Garofalo in [3]. Our results apply in particular on all CR Sasakian manifolds whose horizontal Webster-Tanaka-Ricci curvature is nonnegative, all Carnot groups with step two, and wide subclasses of principal bundles over Riemannian manifolds whose Ricci curvature is nonnegative.
引用
收藏
页码:109 / 131
页数:23
相关论文
共 21 条
[1]  
[Anonymous], 1970, Problems in Analysis
[2]  
Baudoin F., MATH ANN IN PRESS
[3]  
Baudoin F., 2011, ARXIV11013590V4
[4]   Log-Sobolev inequalities for subelliptic operators satisfying a generalized curvature dimension inequality [J].
Baudoin, Fabrice ;
Bonnefont, Michel .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (06) :2646-2676
[5]  
BRASCAMP H. J., 1974, J. Funct. Anal., V17, P227
[6]  
Capogna L., 2007, Progress in Mathematics, V259
[7]  
FEFFERMAN C., 1983, COMM PURE APPL MATH, VII
[8]  
FEFFERMAN C., 1983, COMM PURE APPL MATH, VI
[9]  
FEFFERMAN C., 1981, C HARM AN CHIC 1980, VII, P590
[10]  
FEFFERMAN C, 1981, C HARM AN HON ANT ZY, V1, P590