Cell-centered finite volume methods with flexible stencils for diffusion equations on general nonconforming meshes

被引:27
作者
Chang, Lina [1 ]
Yuan, Guangwei [1 ]
机构
[1] Inst Appl Phys & Computat Math, Lab Computat Phys, Beijing 100088, Peoples R China
关键词
Finite volume method; Diffusion equations; Nonconforming meshes; Lagrangian meshes; DISTORTED MESHES; TENSOR COEFFICIENTS; POLYGONAL MESHES; SCHEME; OPERATORS; APPROXIMATION; GRIDS; DISCRETIZATION;
D O I
10.1016/j.cma.2009.01.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A cell-centered finite volume method is presented for discretizing diffusion operator on general nonconforming meshes. The node values are accurately approximated using a new weighted interpolation formula, in which the calculation of the weight is adaptive to both geometric parameters and diffusion coefficients. It follows that an explicit expression, composed of cell-centered unknowns only, is obtained for the discretization of normal flux. Numerical results demonstrate that linear solutions are reproduced exactly on the nonconforming random grids, and that the convergence rate is close to second order for non-linear or discontinuous problems. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1638 / 1646
页数:9
相关论文
共 32 条
[1]   Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes [J].
Andreianov, Boris ;
Boyer, Franck ;
Hubert, Florence .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (01) :145-195
[2]   On vertex reconstructions for cell-centered finite volume approximations of 2d anisotropic diffusion problems [J].
Bertolazzi, Enrico ;
Manzini, Gianmarco .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (01) :1-32
[3]   FINITE VOLUME METHOD FOR 2D LINEAR AND NONLINEAR ELLIPTIC PROBLEMS WITH DISCONTINUITIES [J].
Boyer, Franck ;
Hubert, Florence .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (06) :3032-3070
[4]   A cell-centered diffusion scheme on two-dimensional unstructured meshes [J].
Breil, Jerome ;
Maire, Pierre-Henri .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 224 (02) :785-823
[5]   Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes [J].
Coudière, Y ;
Villedieu, P .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (06) :1123-1149
[6]  
COUDIERE Y, 1999, ESAIM-MATH MODEL NUM, V33, P493
[7]   A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids [J].
Domelevo, K ;
Omnes, P .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (06) :1203-1249
[8]   A mixed finite volume scheme for anisotropic diffusion problems on any grid [J].
Droniou, Jerome ;
Eymard, Robert .
NUMERISCHE MATHEMATIK, 2006, 105 (01) :35-71
[9]   Elimination of adaptive grid interface errors in the discrete cell centered pressure equation [J].
Edwards, MG .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 126 (02) :356-372
[10]  
Eymard R, 2000, HDBK NUM AN, V7, P713