Duffin-Kemmer-Petiau oscillator with Snyder-de Sitter algebra

被引:20
|
作者
Falek, M. [1 ]
Merad, M. [2 ]
Birkandan, T. [3 ]
机构
[1] Univ Biskra, Fac Sci Exactes & SNV, Dept Sci Matiiere, Biskra 07000, Algeria
[2] Univ Oum El Bouaghi, Fac Sci Exactes, Lab LSDC, Oum El Bouaghi 04000, Algeria
[3] Istanbul Tech Univ, Dept Phys, TR-34469 Istanbul, Turkey
关键词
GENERALIZED UNCERTAINTY PRINCIPLE; DIMENSIONAL DIRAC OSCILLATOR; PARTICLE;
D O I
10.1063/1.4975137
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an exact solution of the one-dimensional Bosonic oscillator for spin 1 and spin 0 particles with the Snyder-de Sitter model, where the energy eigenvalues and eigenfunctions are determined for both cases. The wave functions can be given in terms of Gegenbauer polynomials. We also comment on the thermodynamic properties of the system. Published by AIP Publishing.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] An extended version of the spin-one Duffin-Kemmer-Petiau oscillator
    Chargui, Y.
    Dhahbi, A.
    PHYSICA SCRIPTA, 2021, 96 (07)
  • [22] On the Thermodynamic Properties of the Spinless Duffin-Kemmer-Petiau Oscillator in Noncommutative Plane
    Wang, Zhi
    Long, Zheng-Wen
    Long, Chao-Yun
    Zhang, Wei
    ADVANCES IN HIGH ENERGY PHYSICS, 2015, 2015
  • [23] DUFFIN-KEMMER-PETIAU PARTICLE WITH INTERNAL STRUCTURE
    KROLIKOWSKI, W
    ACTA PHYSICA POLONICA B, 1987, 18 (02): : 111 - 119
  • [24] DUFFIN-KEMMER-PETIAU SUBALGEBRAS - REPRESENTATIONS AND APPLICATIONS
    FISCHBACH, E
    NIETO, MM
    SCOTT, CK
    JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (12) : 1760 - 1774
  • [25] Galilean covariance and the Duffin-Kemmer-Petiau equation
    de Montigny, M
    Khanna, FC
    Santana, AE
    Santos, ES
    Vianna, JDM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (31): : L273 - L278
  • [26] Duffin-Kemmer-Petiau equation and thermodynamic quantities
    Alkis, E.
    Kangal, E. E.
    Onengut, G.
    Topaksu, A. K.
    MODERN PHYSICS LETTERS A, 2021, 36 (11)
  • [27] The Dunkl–Duffin–Kemmer–Petiau Oscillator
    A. Merad
    M. Merad
    Few-Body Systems, 2021, 62
  • [28] Duffin-Kemmer-Petiau theory in the causal approach
    Lunardi, JT
    Pimentel, BM
    Valverde, JS
    Manzoni, LA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2002, 17 (02): : 205 - 227
  • [29] Duffin-Kemmer-Petiau equation on the quaternion field
    DeLeo, S
    PROGRESS OF THEORETICAL PHYSICS, 1995, 94 (06): : 1109 - 1120
  • [30] On the Duffin-Kemmer-Petiau equation in arbitrary dimensions
    de Montigny, M.
    Santos, E. S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (08)