Nonpolar Nucleoside Mimics as Active Substrates for Human Thymidine Kinases

被引:19
作者
Jarchow-Choy, Sarah K. [2 ]
Sjuvarsson, Elena [1 ]
Sintim, Herman O. [2 ]
Eriksson, Staffan [1 ]
Kool, Eric T. [2 ]
机构
[1] Swedish Univ Agr Sci, Dept Anat Physiol & Biochem, Uppsala, Sweden
[2] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
基金
瑞典研究理事会;
关键词
DEOXYRIBONUCLEOSIDE KINASES; DEOXYCYTIDINE KINASE; ANTIVIRAL AGENTS; DNA-POLYMERASE; BASE-PAIR; ANALOGS; PHOSPHORYLATION; DIFLUOROTOLUENE; REPLICATION; DEOXYNUCLEOSIDE;
D O I
10.1021/ja808244t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We describe the use of nonpolar nucleoside analogues of systematically varied size and shape to probe the mechanisms by which the two human thymidine kinases (TK1 and TK2) recognize and phosphorylate their substrate, thymidine. Comparison of polar thymidine with a nonpolar isostere, 2,4-difluorotoluene deoxyriboside, as substrates for the two enzymes establishes that TK1 requires electrostatic complementarity to recognize the thymine base with high efficiency. Conversely, TK2 does not and phosphorylates the hydrophobic shape mimic with efficiency nearly the same as the natural substrate. To test the response to nucleobase size, thymidine-like analogues were systematically varied by replacing the 2,4 substituents on toluene with hydrogen and the halogen series (H, F, Cl, Br, I). Both enzymes showed a distinct preference for substrates having the natural size. To examine the shape preference, we prepared four mono- and difluorotoluene deoxyribosides with varying positions of substitutions. While TK1 did not accept these nonpolar analogues as substrates, TK2 did show varying levels of phosphorylation of the shape-varied set. This latter enzyme preferred toluene nucleoside analogues having steric projections at the 2 and 4 positions, as is found in thymine, and strongly disfavored substitution at the 3-position. Steady-state kinetics measurements showed that the 4-fluoro compound (7) had an apparent V-max/K-m value within 14-fold of the natural substrate, and the 2,4-difluoro compound (1), which is the closest isostere of thymidine, had a value within 2.5-fold. The results establish that nucleoside recognition mechanisms for the two classes of enzymes are very different. On the basis of these data, nonpolar nucleosides are likely to be active in the nucleotide salvage pathway in human cells, suggesting new designs for future bioactive molecules.
引用
收藏
页码:5488 / 5494
页数:7
相关论文
共 36 条
[1]   Phosphorylation of isocarbostyril- and difluorophenyl-nucleoside thymidine mimics by the human deoxynucleoside kinases [J].
Al-Madhoun, AS ;
Eriksson, S ;
Wang, ZX ;
Naimi, E ;
Knaus, EE ;
Wiebe, LI .
NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS, 2004, 23 (12) :1865-1874
[2]  
Al-Madhoun AS, 2004, MINI-REV MED CHEM, V4, P341
[3]  
Barrero AF, 2001, SYNLETT, P485
[4]   CLONING AND EXPRESSION OF HUMAN DEOXYCYTIDINE KINASE CDNA [J].
CHOTTINER, EG ;
SHEWACH, DS ;
DATTA, NS ;
ASHCRAFT, E ;
GRIBBIN, D ;
GINSBURG, D ;
FOX, IH ;
MITCHELL, BS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (04) :1531-1535
[5]   Non-homologous recombination of deoxyribonucleoside kinases from human and Drosophila melanogaster yields human-like enzymes with novel activities [J].
Gerth, Monica L. ;
Lutz, Stefan .
JOURNAL OF MOLECULAR BIOLOGY, 2007, 370 (04) :742-751
[6]   Highly precise shape mimicry by a difluorotoluene deoxynucleoside, a replication-competent substitute for thymidine [J].
Guckian, KM ;
Kool, ET .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1997, 36 (24) :2825-2828
[7]   Design, synthesis, and biological evaluation of novel nucleoside and nucleotide analogues as agents against DNA viruses and/or retroviruses [J].
Hakimelahi, GH ;
Ly, TW ;
Moosavi-Movahedi, AA ;
Jain, ML ;
Zakerinia, M ;
Davari, H ;
Mei, HC ;
Sambaiah, T ;
Moshfegh, AA ;
Hakimelahi, S .
JOURNAL OF MEDICINAL CHEMISTRY, 2001, 44 (22) :3710-3720
[8]   THYMIDINE KINASES - THE ENZYMES AND THEIR CLINICAL USEFULNESS [J].
HANNIGAN, BM ;
BARNETT, YA ;
ARMSTRONG, DBA ;
MCKELVEYMARTIN, VJ ;
MCKENNA, PG .
CANCER BIOTHERAPY, 1993, 8 (03) :189-197
[9]   Beyond A, C, G and T: augmenting nature's alphabet [J].
Henry, AA ;
Romesberg, FE .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2003, 7 (06) :727-733
[10]   Early response assessment using 3′-Deoxy-3′-[18F]fluorothymidine-positron emission tomography in high-grade non-Hodgkin's lymphoma [J].
Herrmann, Ken ;
Wieder, Hinrich A. ;
Buck, Andreas K. ;
Schoeffel, Marion ;
Krause, Bernd-Joachim ;
Fend, Falko ;
Schuster, Tibor ;
zum Bueschenfeld, Christian Meyer ;
Wester, Hans-Juergen ;
Duyster, Justus ;
Peschel, Christian ;
Schwaiger, Markus ;
Dechow, Tobias .
CLINICAL CANCER RESEARCH, 2007, 13 (12) :3552-3558