Subdivision direction selection in interval methods for global optimization

被引:90
|
作者
Csendes, T [1 ]
Ratz, D [1 ]
机构
[1] UNIV KARLSRUHE, INST ANGEW MATH, D-76128 KARLSRUHE, GERMANY
关键词
global optimization; interval arithmetic; interval subdivision;
D O I
10.1137/S0036142995281528
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The role of the interval subdivision-selection rule is investigated in branch-and-bound algorithms for global optimization. The class of rules that allows convergence for the model algorithm is characterized, and it is shown that the four rules investigated satisfy the conditions of convergence. A numerical study with a wide spectrum of test problems indicates that there are substantial differences between the rules in terms of the required CPU time, the number of function and derivative evaluations, and space complexity, and two rules can provide substantial improvements in efficiency.
引用
收藏
页码:922 / 938
页数:17
相关论文
共 50 条
  • [41] Hybrid method for global optimization using more accuracy interval computation
    崔中浩
    雷咏梅
    Advances in Manufacturing, 2011, (05) : 445 - 450
  • [42] On estimating workload in interval branch-and-bound global optimization algorithms
    José L. Berenguel
    L. G. Casado
    I. García
    Eligius M. T. Hendrix
    Journal of Global Optimization, 2013, 56 : 821 - 844
  • [43] Branch-and-bound interval global optimization on shared memory multiprocessors
    Casado, L. G.
    Martinez, J. A.
    Garcia, I.
    Hendrix, E. M. T.
    OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (05) : 689 - 701
  • [44] On estimating workload in interval branch-and-bound global optimization algorithms
    Berenguel, Jose L.
    Casado, L. G.
    Garcia, I.
    Hendrix, Eligius M. T.
    JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (03) : 821 - 844
  • [45] On an Efficient Use of Gradient Information for Accelerating Interval Global Optimization Algorithms
    J.A. Martínez
    L.G. Casado
    I. García
    Ya.D. Sergeyev
    B. Tóth
    Numerical Algorithms, 2004, 37 : 61 - 69
  • [46] An interval algorithm for bound constrained global optimization
    Wolfe, MA
    OPTIMIZATION METHODS & SOFTWARE, 1995, 6 (02) : 145 - 159
  • [47] Subdivision, sampling, and initialization strategies for simplical branch and bound in global optimization
    Clausen, J
    Zilinskas, A
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 44 (07) : 943 - 955
  • [48] Maintenance optimization under uncertainties using interval methods & evolutionary strategies
    Rocco, CM
    ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 2002 PROCEEDINGS, 2002, : 254 - 259
  • [49] Equivalent methods for global optimization
    MacLagan, D
    Sturge, T
    Baritompa, W
    STATE OF THE ART IN GLOBAL OPTIMIZATION: COMPUTATIONAL METHODS AND APPLICATIONS, 1996, 7 : 201 - 211
  • [50] Parallel methods for verified global optimization practice and theory
    Berner, S
    JOURNAL OF GLOBAL OPTIMIZATION, 1996, 9 (01) : 1 - 22