Endoplasmic Reticulum Stress and Oxidative Stress in Cell Fate Decision and Human Disease

被引:1048
作者
Cao, Stewart Siyan [1 ,2 ]
Kaufman, Randal J. [1 ]
机构
[1] Sanford Burnham Med Res Inst, Degenerat Dis Program, La Jolla, CA 92037 USA
[2] Univ Michigan, Dept Biol Chem, Med Ctr, Ann Arbor, MI 48109 USA
关键词
UNFOLDED PROTEIN RESPONSE; MITOCHONDRIAL ELECTRON-TRANSPORT; THIOREDOXIN-INTERACTING PROTEIN; ER CHAPERONE GRP78/BIP; PANCREATIC BETA-CELLS; TRANSCRIPTION FACTOR; TAUROURSODEOXYCHOLIC ACID; TRANSLATIONAL INHIBITION; HOMOLOGOUS PROTEIN; MISFOLDED PROTEINS;
D O I
10.1089/ars.2014.5851
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Significance: The endoplasmic reticulum (ER) is a specialized organelle for the folding and trafficking of proteins, which is highly sensitive to changes in intracellular homeostasis and extracellular stimuli. Alterations in the protein-folding environment cause accumulation of misfolded proteins in the ER that profoundly affect a variety of cellular signaling processes, including reduction-oxidation (redox) homeostasis, energy production, inflammation, differentiation, and apoptosis. The unfolded protein response (UPR) is a collection of adaptive signaling pathways that evolved to resolve protein misfolding and restore an efficient protein-folding environment. Recent Advances: Production of reactive oxygen species (ROS) has been linked to ER stress and the UPR. ROS play a critical role in many cellular processes and can be produced in the cytosol and several organelles, including the ER and mitochondria. Studies suggest that altered redox homeostasis in the ER is sufficient to cause ER stress, which could, in turn, induce the production of ROS in the ER and mitochondria. Critical Issues: Although ER stress and oxidative stress coexist in many pathologic states, whether and how these stresses interact is unknown. It is also unclear how changes in the protein-folding environment in the ER cause oxidative stress. In addition, how ROS production and protein misfolding commit the cell to an apoptotic death and contribute to various degenerative diseases is unknown. Future Directions: A greater fundamental understanding of the mechanisms that preserve protein folding homeostasis and redox status will provide new information toward the development of novel therapeutics for many human diseases.
引用
收藏
页码:396 / 413
页数:18
相关论文
共 177 条
[1]  
Almenier Hazem A, 2012, Front Biosci (Elite Ed), V4, P1335
[2]   Oxidative Stress and Inflammation: Essential Partners in Alcoholic Liver Disease [J].
Ambade, Aditya ;
Mandrekar, Pranoti .
INTERNATIONAL JOURNAL OF HEPATOLOGY, 2012, 2012
[3]   Characterization of a Novel PERK Kinase Inhibitor with Antitumor and Antiangiogenic Activity [J].
Atkins, Charity ;
Liu, Qi ;
Minthorn, Elisabeth ;
Zhang, Shu-Yun ;
Figueroa, David J. ;
Moss, Katherine ;
Stanley, Thomas B. ;
Sanders, Brent ;
Goetz, Aaron ;
Gaul, Nathan ;
Choudhry, Anthony E. ;
Alsaid, Hasan ;
Jucker, Beat M. ;
Axten, Jeffrey M. ;
Kumar, Rakesh .
CANCER RESEARCH, 2013, 73 (06) :1993-2002
[4]   PERK Integrates Autophagy and Oxidative Stress Responses To Promote Survival during Extracellular Matrix Detachment [J].
Avivar-Valderas, Alvaro ;
Salas, Eduardo ;
Bobrovnikova-Marjon, Ekaterina ;
Diehl, J. Alan ;
Nagi, Chandandeep ;
Debnath, Jayanta ;
Aguirre-Ghiso, Julio A. .
MOLECULAR AND CELLULAR BIOLOGY, 2011, 31 (17) :3616-3629
[5]   Endoplasmic Reticulum Stress and Type 2 Diabetes [J].
Back, Sung Hoon ;
Kaufman, Randal J. .
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 81, 2012, 81 :767-793
[6]   Translation Attenuation through elF2α Phosphorylation Prevents Oxidative Stress and Maintains the Differentiated State in β Cells [J].
Back, Sung Hoon ;
Scheuner, Donalyn ;
Han, Jaeseok ;
Song, Benbo ;
Ribick, Mark ;
Wang, Junying ;
Gildersleeve, Robert D. ;
Pennathur, Subramaniam ;
Kaufman, Randal J. .
CELL METABOLISM, 2009, 10 (01) :13-26
[7]   Antiprion drugs 6-aminophenanthridine and guanabenz reduce PABPN1 toxicity and aggregation in oculopharyngeal muscular dystrophy [J].
Barbezier, Nicolas ;
Chartier, Aymeric ;
Bidet, Yannick ;
Buttstedt, Anja ;
Voisset, Cecile ;
Galons, Herve ;
Blondel, Marc ;
Schwarz, Elisabeth ;
Simonelig, Martine .
EMBO MOLECULAR MEDICINE, 2011, 3 (01) :35-49
[8]   Increased sensitivity to dextran sodium sulfate colitis in IRE1β-deficient mice [J].
Bertolotti, A ;
Wang, XZ ;
Novoa, I ;
Jungreis, R ;
Schlessinger, K ;
Cho, JH ;
West, AB ;
Ron, D .
JOURNAL OF CLINICAL INVESTIGATION, 2001, 107 (05) :585-593
[9]   ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth [J].
Bi, MX ;
Naczki, C ;
Koritzinsky, M ;
Fels, D ;
Blais, J ;
Hu, NP ;
Harding, H ;
Novoa, I ;
Varia, M ;
Raleigh, J ;
Scheuner, D ;
Kaufman, RJ ;
Bell, J ;
Ron, D ;
Wouters, BG ;
Koumenis, C .
EMBO JOURNAL, 2005, 24 (19) :3470-3481
[10]   Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress [J].
Blais, Jaime D. ;
Addison, Christina L. ;
Edge, Robert ;
Falls, Theresa ;
Zhao, Huijun ;
Wary, Kishore ;
Koumenis, Costas ;
Harding, Heather P. ;
Ron, David ;
Holcik, Martin ;
Bell, John C. .
MOLECULAR AND CELLULAR BIOLOGY, 2006, 26 (24) :9517-9532