Superpixel and Density Based Region Segmentation Algorithm for Lung Nodule Detection

被引:0
作者
Halder, Amitava [1 ]
Chatterjee, Saptarshi [2 ]
Dey, Debangshu [2 ]
机构
[1] Supreme Knowledge Fdn Grp Inst, Comp Sci & Engn Dept, Hooghly, India
[2] Jadavpur Univ, Elect Engn Dept, Kolkata, India
来源
2020 IEEE CALCUTTA CONFERENCE (CALCON) | 2020年
关键词
density-based clustering; lung cancer; nodule; segmentation; superpixel; support vector machine; AUTOMATIC DETECTION;
D O I
10.1109/calcon49167.2020.9106569
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lung nodule detection and segmentation plays an important role in early cancer diagnosis. It is a challenging task owing to the shape and intensity variations of a lung nodule. This paper reports an efficient nodule detection framework in High-Resolution Computed Tomography (HRCT) images. Here, an automated computer-aided lung nodule detection scheme is proposed, combining the concept of superpixel generation and density-based region segmentation algorithm, Superpixel Density-Based Region segmentation (SPDBR). A set of morphological features are extracted from each of the extracted nodule regions. The nodule candidate regions have been classified into the nodule and non-nodule decision using a non-linear support vector machine (SVM) classifier with an average detection accuracy of 84.75% with 82.86% sensitivity and 86.62% specificity.
引用
收藏
页码:511 / 515
页数:5
相关论文
共 18 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]   Automated pulmonary nodule detection based on three-dimensional shape-based feature descriptor [J].
Choi, Wook-Jin ;
Choi, Tae-Sun .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2014, 113 (01) :37-54
[3]   Automatic detection of solitary lung nodules using quality threshold clustering, genetic algorithm and diversity index [J].
de Carvalho Filho, Antonio Oseas ;
de Sampaio, Wener Borges ;
Silva, Aristofanes Correa ;
de Paivaa, Anselmo Cardoso ;
Nunes, Rodolfo Acatauassu ;
Gattass, Marcelo .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2014, 60 (03) :165-177
[4]   Ensemble classification of pulmonary nodules using gradient intensity feature descriptor and differential evolution [J].
Jaffar, M. Arfan ;
Siddiqui, Abdul Basit ;
Mushtaq, Mubashar .
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2018, 21 (01) :393-407
[5]   Application of the iris filter for automatic detection of pulmonary nodules on computed tomography images [J].
Juan Suarez-Cuenca, Jorge ;
Tahoces, Pablo G. ;
Souto, Miguel ;
Lado, Maria J. ;
Remy-Jardin, Martine ;
Remy, Jacques ;
Jose Vidal, Juan .
COMPUTERS IN BIOLOGY AND MEDICINE, 2009, 39 (10) :921-933
[6]   Large scale validation of the M5L lung CAD on heterogeneous CT datasets [J].
Lopez Torres, E. ;
Fiorina, E. ;
Pennazio, F. ;
Peroni, C. ;
Saletta, M. ;
Camarlinghi, N. ;
Fantacci, M. E. ;
Cerello, P. .
MEDICAL PHYSICS, 2015, 42 (04) :1477-1489
[7]   Lung Nodule Classification in CT Thorax Images using Support Vector Machines [J].
Madero Orozco, Hiram ;
Vergara Villegas, Osslan Osiris ;
Ochoa Dominguez, Humberto de Jesus ;
Cruz Sanchez, Vianey Guadalupe .
2013 12TH MEXICAN INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (MICAI 2013), 2013, :277-283
[8]   A new computationally efficient CAD system for pulmonary nodule detection in CT imagery [J].
Messay, Temesguen ;
Hardie, Russell C. ;
Rogers, Steven K. .
MEDICAL IMAGE ANALYSIS, 2010, 14 (03) :390-406
[9]   Nodule detection in a lung region that's segmented with using genetic cellular neural networks and 3D template matching with fuzzy rule based thresholding [J].
Ozekes, Serhat ;
Osman, Onur ;
Ucan, Osman N. .
KOREAN JOURNAL OF RADIOLOGY, 2008, 9 (01) :1-9
[10]   Computerized Lung Nodule Detection Using 3D Feature Extraction and Learning Based Algorithms [J].
Ozekes, Serhat ;
Osman, Onur .
JOURNAL OF MEDICAL SYSTEMS, 2010, 34 (02) :185-194