Propagation of intrinsic chirped sub-cycle and single-cycle pulses in a silica fiber

被引:3
作者
Cai, Xunming [1 ]
Zhao, Jingyun [2 ]
Lin, Qiang [3 ]
Luo, Jiaolian [1 ]
Yang, Yang [1 ]
机构
[1] Guizhou Minzu Univ, Special & Key Lab Guizhou Prov Higher Educ Green, Guiyang 550025, Peoples R China
[2] Zhejiang Sci Tech Univ, Sch Sci, Hangzhou 310018, Zhejiang, Peoples R China
[3] Zhejiang Univ Technol, Coll Sci, Dept Appl Phys, Hangzhou 310023, Zhejiang, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Sub-cycle pulse; Intrinsic chirp; Self-steepening effect; Carrier frequency modulation; NONPARAXIAL GAUSSIAN BEAMS; NONLINEAR OPTICS; MAXWELLS EQUATIONS; SOLITONS; MEDIA; FIELD;
D O I
10.1016/j.optcom.2015.12.067
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The propagation of Gaussian sub-cycle and single-cycle pulses in a nonlinear media is studied using the analytical expression of pulses. The analytical expression is a modified version of the vector potential definition model of sub-cycle pulse. The intrinsic characteristics of sub-cycle and single-cycle pulses, such as the intrinsic chirp and the self-induced blue-shift of the central frequency of spectrum are found to have an important effect on the propagation of pulses in the nonlinear media. The initial 0.28-cycle pulse evolves into a primary multi-cycle pulse and a single-cycle precursor pulse during the propagation. The single-cycle precursor pulse is formed by the carrier frequency modulation on the leading side of pulse. During the propagation of the sub-cycle pulse, the self-steepening effect and the amplitude of the precursor pulse are more significant due to the shorter pulse duration. The reason can be attributed to the intrinsic characteristics of sub-cycle pulse. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:221 / 228
页数:8
相关论文
共 22 条
  • [1] Agrawal G., 2012, NONLINEAR FIBER OPTI, DOI DOI 10.1016/C2011-0-00045-5
  • [2] Nonlinear optical pulse propagation in the single-cycle regime
    Brabec, T
    Krausz, F
    [J]. PHYSICAL REVIEW LETTERS, 1997, 78 (17) : 3282 - 3285
  • [3] Optical forces on two-level atoms by subcycle pulsed focused vector fields
    Cai, Xunming
    Zheng, Jian
    Lin, Qiang
    [J]. PHYSICAL REVIEW A, 2013, 87 (04):
  • [4] Spatiotemporal structure of isodiffracting ultrashort electromagnetic pulses
    Feng, SM
    Winful, HG
    [J]. PHYSICAL REVIEW E, 2000, 61 (01): : 862 - 873
  • [5] Frantzeskakis DJ, 2014, ROM J PHYS, V59, P767
  • [6] DIRECT TIME INTEGRATION OF MAXWELLS EQUATIONS IN NONLINEAR DISPERSIVE MEDIA FOR PROPAGATION AND SCATTERING OF FEMTOSECOND ELECTROMAGNETIC SOLITONS
    GOORJIAN, PM
    TAFLOVE, A
    [J]. OPTICS LETTERS, 1992, 17 (03) : 180 - 182
  • [7] Single-cycle nonlinear optics
    Goulielmakis, E.
    Schultze, M.
    Hofstetter, M.
    Yakovlev, V. S.
    Gagnon, J.
    Uiberacker, M.
    Aquila, A. L.
    Gullikson, E. M.
    Attwood, D. T.
    Kienberger, R.
    Krausz, F.
    Kleineberg, U.
    [J]. SCIENCE, 2008, 320 (5883) : 1614 - 1617
  • [8] General vector auxiliary differential equation finite-difference time-domain method for nonlinear optics
    Greene, Jethro H.
    Taflove, Allen
    [J]. OPTICS EXPRESS, 2006, 14 (18): : 8305 - 8310
  • [9] Hevman E., 1989, J OPT SOC AM A, V6, P806
  • [10] Numerical solutions of Maxwell's equations for nonlinear-optical pulse propagation
    Hile, CV
    Kath, WL
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1996, 13 (06) : 1135 - 1145