Toughness Improvement in Bio-based Poly(Lactic Acid)/Epoxidized Natural Rubber Blend Reinforced with Nanosized Silica

被引:17
作者
Boonmahitthisud, A. [1 ,2 ]
Mongkolvai, A. [3 ]
Chuayjuljit, S. [1 ]
机构
[1] Chulalongkorn Univ, Fac Sci, Dept Mat Sci, Bangkok 10330, Thailand
[2] Chulalongkorn Univ, Fac Sci, Green Mat Ind Applicat Res Unit, Bangkok 10330, Thailand
[3] Chulalongkorn Univ, Fac Sci, Program Petrochem & Polymer Sci, Bangkok 10330, Thailand
关键词
Nanocomposite; PLA; ENR; Nanosized silica; Toughness; Morphology; POLY LACTIC-ACID; MORPHOLOGICAL PROPERTIES; THERMAL-PROPERTIES; BEHAVIOR; CRYSTALLIZATION; PLA; COMPATIBILIZATION; DEGRADATION; COMPOSITES; FIBER;
D O I
10.1007/s10924-021-02063-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study focused on improving the toughness properties of poly(lactic acid) (PLA) by blending with either epoxidized natural rubber (ENR) or ENR plus nanosized silica (nSiO(2)). ENR with 30 mol% epoxidation (ENR-30) was synthesized via in situ performic acid epoxidation of NR latex under a controlled amount of hydrogen peroxide and formic acid. PLA was melt-mixed with three weight percentages (10-30 wt %) of ENR-30 using an internal mixer, followed by compression molding. The 80/20 PLA/ENR-30 blend showed the highest impact strength and elongation at break, indicating the optimally possible improvement in the toughness of PLA. This composition was further chosen for fabricating nanocomposites with nSiO(2) at 1-3 phr. Nanocomposite at 2 phr nSiO(2) revealed the highest impact strength with 1.8-fold over the neat blend, but the tensile properties of all nanocomposites decreased with the increasing nSiO(2) contents. The scanning electron microscopy analysis showed a preferential distribution of nSiO(2) in the ENR-30 phase rather than in the PLA phase. Based on thermal analysis results, the thermal stability of the entire nanocomposites was significantly higher than that of the neat blend, while the thermal behavior (T-g and T-m) of PLA in the nanocomposites showed no significant change. [GRAPHICS] .
引用
收藏
页码:2530 / 2545
页数:16
相关论文
共 44 条
[11]   Mechanical properties, thermal behaviors and oil resistance of epoxidized natural rubber/multiwalled carbon nanotube nanocomposites prepared via in situ epoxidation [J].
Chuayjuljit, Saowaroj ;
Mungmeechai, Piyaphorn ;
Boonmahitthisud, Anyaporn .
JOURNAL OF ELASTOMERS AND PLASTICS, 2017, 49 (02) :99-119
[12]  
Cipriano TF, 2014, POLIMEROS, V24, P276
[13]  
Cosme JGL., Mater Sci Appl, DOI DOI 10.4236/MSA.2016.74021
[14]   Fabrication of natural rubber/epoxidized natural rubber/nanosilica nanocomposites and their physical characteristics [J].
Cuong Manh Vu ;
Huong Thi Vu ;
Choi, Hyoung Jin .
MACROMOLECULAR RESEARCH, 2015, 23 (03) :284-290
[15]   Influence of rubber content on mechanical, thermal, and morphological behavior of natural rubber toughened poly(lactic acid)-multiwalled carbon nanotube nanocomposites [J].
Desa, Mohd Shaiful Zaidi Mat ;
Hassan, Azman ;
Arsad, Agus ;
Arjmandi, Reza ;
Mohammad, Nor Nisa Balqis .
JOURNAL OF APPLIED POLYMER SCIENCE, 2016, 133 (48)
[16]   Effect of Silica Nanoparticles on the Mechanical Performances of Poly(Lactic Acid) [J].
Dorigato, A. ;
Sebastiani, M. ;
Pegoretti, A. ;
Fambri, L. .
JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2012, 20 (03) :713-725
[17]   Hydrolytic degradation of polylactic acid (PLA) and its composites [J].
Elsawy, Moataz A. ;
Kim, Ki-Hyun ;
Park, Jae-Woo ;
Deep, Akash .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 79 :1346-1352
[18]   Toughening of Poly(L-lactide) by Melt Blending with Rubbers [J].
Ishida, Sachiko ;
Nagasaki, Reiko ;
Chino, Keisuke ;
Dong, Tungalag ;
Inoue, Yoshio .
JOURNAL OF APPLIED POLYMER SCIENCE, 2009, 113 (01) :558-566
[19]   The Influences of Elastomer toward Crystallization of Poly(lactic acid) [J].
Kaavessina, M. ;
Ali, I. ;
Al-Zahrani, S. M. .
INTERNATIONAL CONFERENCE ON INNOVATION IN POLYMER SCIENCE AND TECHNOLOGY, 2012, 4 :164-171
[20]   Effect of Thermoplastic Polyurethane-Modified Silica on Melt-Blended Poly(Lactic Acid) (PLA) Nanocomposites [J].
Lai, Sun-Mou ;
Li, Pei-Wen .
POLYMERS & POLYMER COMPOSITES, 2017, 25 (08) :583-591