Derivative superconvergence of linear finite elements by recovery techniques

被引:0
|
作者
Zhang, T [1 ]
Li, CJ
Nie, YY
机构
[1] Acad Sinica, Shenyang Inst Automat, Shenyang 110016, Peoples R China
[2] Northeastern Univ, Shenyang 110004, Peoples R China
关键词
boundary problems; finite element; derivative approximations; recovery techniques; superconvergence;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this article is to investigate the superconvergence in derivative approximations of finite element solutions. We construct three kinds of derivative recovery formulas at the mesh points for linear, bilinear and quadrilateral finite elements, respectively, in the approximations of second order elliptic boundary value problems. These recovery formulas are simpler and more available comparing to the existing formulas. We also show the superconvergence for each derivative recovery formulas.
引用
收藏
页码:853 / 862
页数:10
相关论文
共 50 条
  • [31] SUPERCONVERGENCE FOR RECTANGULAR MIXED FINITE-ELEMENTS
    DURAN, R
    NUMERISCHE MATHEMATIK, 1990, 58 (03) : 287 - 298
  • [32] Superconvergence Analysis for Linear Tetrahedral Edge Elements
    Huang, Yunqing
    Li, Jichun
    Wu, Chao
    Yang, Wei
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 62 (01) : 122 - 145
  • [33] Superconvergence Recovery for the Gradient of the Trilinear Finite Element
    Liu, Jinghong
    Yin, Decheng
    COMPUTATIONAL MATERIALS SCIENCE, PTS 1-3, 2011, 268-270 : 1021 - +
  • [34] ON A GLOBAL SUPERCONVERGENCE OF THE GRADIENT OF LINEAR TRIANGULAR ELEMENTS
    KRIZEK, M
    NEITTAANMAKI, P
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 18 (02) : 221 - 233
  • [35] Superconvergence Analysis for Linear Tetrahedral Edge Elements
    Yunqing Huang
    Jichun Li
    Chao Wu
    Wei Yang
    Journal of Scientific Computing, 2015, 62 : 122 - 145
  • [36] A survey of superconvergence techniques in finite element methods
    Zhu, QD
    FINITE ELEMENT METHODS: SUPERCONVERGENCE, POST-PROCESSING, AND A POSTERIORI ESTIMATES, 1998, 196 : 287 - 302
  • [37] LINEAR FINITE ELEMENT SUPERCONVERGENCE ON SIMPLICIAL MESHES
    Chen, Jie
    Wang, Desheng
    Du, Qiang
    MATHEMATICS OF COMPUTATION, 2014, 83 (289) : 2161 - 2185
  • [38] SUPERCONVERGENCE FOR ELLIPTIC OPTIMAL CONTROL PROBLEMS DISCRETIZED BY RT1 MIXED FINITE ELEMENTS AND LINEAR DISCONTINUOUS ELEMENTS
    Hou, Tianliang
    Chen, Yanping
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2013, 9 (03) : 631 - 642
  • [39] Superconvergence for L2-projection in finite elements
    Chen, CM
    CHINESE SCIENCE BULLETIN, 1998, 43 (01): : 22 - 24
  • [40] SUPERCONVERGENCE AND POSTPROCESSING OF EQUILIBRATED FLUXES FOR QUADRATIC FINITE ELEMENTS
    Kim, Kwang-Yeon
    JOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 27 (04) : 245 - 271