3D finite element temperature field modelling for direct laser fabrication

被引:38
作者
Yang, Jia [1 ]
Wang, Fude [2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Engn, Wuhan 430074, Peoples R China
[2] Univ Birmingham, IRC Mat, Birmingham B15 2TT, W Midlands, England
关键词
Direct laser fabrication (DLF); 3D finite element modelling; Convection and diffusion; Non-linear thermal properties; Gap elements; Elements removed and reactivated; MOLTEN POOL; EVOLUTION; POWDER;
D O I
10.1007/s00170-008-1785-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to describe the thermal dynamics behaviour in direct laser fabrication (DLF), a 3D finite element temperature field model is proposed to be built/developed based on global model and sub-model pattern. The global model exhibits the heat conduction characteristics of parts in the whole thermal history according to scanning path planning. Contact pairs and gap elements, which consider the effect of the temperature and porosity-dependent thermal conduction, are designed in the model to explain powder-to-solid intrinsic transition. In addition, the elements removed and reactivated technology is applied in the model so as to embody the material stepwise increasing feature. A laser-repairing case developed by ABAQUS demonstrates the global model's thermal history, and the influence of non-linear behaviour of thermal properties in pure nickel on the temperature distribution is estimated as well. Adopting the thermal physical parameters with solid-liquid phase change will make the melted pool temperature higher than that where the solid-liquid phase change parameters are not considered.
引用
收藏
页码:1060 / 1068
页数:9
相关论文
共 19 条
[1]  
*ABAQUS INC, 2004, ABAQUS VERS 6 5 DOC
[2]   Microstructural evolution in laser deposited Ni-25at.% Mo alloy [J].
Banerjee, R ;
Brice, CA ;
Banerjee, S ;
Fraser, HL .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 347 (1-2) :1-4
[3]   Numerical modeling of scanning laser-induced melting, vaporization and resolidification in metals subjected to step heat flux input [J].
Chung, H ;
Das, S .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (19-20) :4153-4164
[4]   Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders [J].
Dai, K ;
Shaw, L .
ACTA MATERIALIA, 2004, 52 (01) :69-80
[5]   Thermal and stress modeling of multi-material laser processing [J].
Dai, K ;
Shaw, L .
ACTA MATERIALIA, 2001, 49 (20) :4171-4181
[6]   Understanding thermal behavior in the LENS process [J].
Griffith, ML ;
Schlienger, ME ;
Harwell, LD ;
Oliver, MS ;
Baldwin, MD ;
Ensz, MT ;
Essien, M ;
Brooks, J ;
Robino, CV ;
Smugeresky, JE ;
Hofmeister, WH ;
Wert, MJ ;
Nelson, DV .
MATERIALS & DESIGN, 1999, 20 (2-3) :107-113
[7]  
KELLER M, 2006, 3 D SIMULATION LASER
[8]   3D FE simulation for temperature evolution in the selective laser sintering process [J].
Kolossov, S ;
Boillat, E ;
Glardon, R ;
Fischer, P ;
Locher, M .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2004, 44 (2-3) :117-123
[9]   A three-dimensional numerical model for a convection-diffusion phase change process during laser melting of ceramic materials [J].
Li, JF ;
Li, L ;
Stott, FH .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (25) :5523-5539
[10]   Laser-induced surface-tension-driven flows in liquids [J].
Longtin, JP ;
Hijikata, K ;
Ogawa, K .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1999, 42 (01) :85-93