The spectral-Galerkin approximation of nonlinear eigenvalue problems

被引:3
作者
An, Jing [1 ,2 ]
Shen, Jie [3 ,4 ,5 ]
Zhang, Zhimin [1 ,6 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[2] Guizhou Normal Univ, Sch Math Sci, Guiyang 550025, Guizhou, Peoples R China
[3] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Peoples R China
[4] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[5] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[6] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Spectral-Galerkin approximation; Error estimation; Iteration algorithm; Nonlinear eigenvalue problems; GROUND-STATE SOLUTION; EFFICIENT;
D O I
10.1016/j.apnum.2018.04.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present and analyze a polynomial spectral-Galerkin method for nonlinear elliptic eigenvalue problems of the form -div(A del u) + Vu + f(u(2))u = lambda u, parallel to u parallel to(L2) = 1. We estimate errors of numerical eigenvalues and eigenfunctions. Spectral accuracy is proved under rectangular meshes and certain conditions of f. In addition, we establish optimal error estimation of eigenvalues in some hypothetical conditions. Then we propose a simple iteration scheme to solve the underlying an eigenvalue problem. Finally, we provide some numerical experiments to show the validity of the algorithm and the correctness of the theoretical results. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 20 条
  • [1] Babuka I., 1991, Finite Element Methods (Part 1), Handbook of Numerical Analysis,, V2, P640
  • [2] Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates
    Bao, Weizhu
    Chern, I-Liang
    Lim, Fong Yin
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 219 (02) : 836 - 854
  • [3] Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow
    Bao, WZ
    Du, Q
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (05) : 1674 - 1697
  • [4] Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation
    Bao, WZ
    Jaksch, D
    Markowich, PA
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) : 318 - 342
  • [5] Bernardi C., 1992, Approximations spectrales de problemes aux limites elliptiques
  • [6] CANCES E., 2003, HDB NUMERICAL ANAL, P3, DOI 10.1016/S1570-8659(03)10003-8
  • [7] NUMERICAL ANALYSIS OF THE PLANEWAVE DISCRETIZATION OF SOME ORBITAL-FREE AND KOHN-SHAM MODELS
    Cances, Eric
    Chakir, Rachida
    Maday, Yvon
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (02): : 341 - 388
  • [8] Numerical Analysis of Nonlinear Eigenvalue Problems
    Cances, Eric
    Chakir, Rachida
    Maday, Yvon
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2010, 45 (1-3) : 90 - 117
  • [9] Chen H., 2013, Advances in Computational Mathematics, P1
  • [10] Finite element approximations of nonlinear eigenvalue problems in quantum physics
    Chen, Huajie
    He, Lianhua
    Zhou, Aihui
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (21-22) : 1846 - 1865