An Essential, Hyperconnected, Local Geometric Morphism that is not Locally Connected

被引:3
|
作者
Hemelaer, Jens [1 ]
Rogers, Morgan [2 ]
机构
[1] Univ Antwerp, Dept Math, Middelheimlaan 1, B-2020 Antwerp, Belgium
[2] Univ Insubria, Ist Nazl Alta Matemat, Via Valleggio 11, I-22100 Como, CO, Italy
关键词
Grothendieck topos; Essential; Hyperconnected; Local; Locally connected; Geometric morphism;
D O I
10.1007/s10485-020-09626-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Thomas Streicher asked on the category theory mailing list whether every essential, hyperconnected, local geometric morphism is automatically locally connected. We show that this is not the case, by providing a counterexample.
引用
收藏
页码:573 / 576
页数:4
相关论文
共 32 条
  • [1] An Essential, Hyperconnected, Local Geometric Morphism that is not Locally Connected
    Jens Hemelaer
    Morgan Rogers
    Applied Categorical Structures, 2021, 29 : 573 - 576
  • [2] AN ESSENTIAL LOCAL GEOMETRIC MORPHISM WHICH IS NOT LOCALLY CONNECTED THOUGH ITS INVERSE IMAGE PART IS AN EXPONENTIAL IDEAL
    Garner, Richard
    Streicher, Thomas
    THEORY AND APPLICATIONS OF CATEGORIES, 2021, 37 : 908 - 913
  • [3] On locally connected connectifications
    Fedeli, A
    Le Donne, A
    TOPOLOGY AND ITS APPLICATIONS, 1999, 96 (01) : 85 - 88
  • [4] Global cycle properties in locally connected, locally traceable and locally hamiltonian graphs
    van Aardt, Susan A.
    Frick, Marietjie
    Oellermann, Ortrud R.
    de Wet, Johan
    DISCRETE APPLIED MATHEMATICS, 2016, 205 : 171 - 179
  • [5] 2 NONMETRIC LOCALLY CONNECTED CONTINUA
    GRUENHAGE, G
    TOPOLOGY AND ITS APPLICATIONS, 1990, 35 (2-3) : 209 - 216
  • [6] Locally connected hereditarily Lindelof compacta
    Kunen, Kenneth
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (18) : 2473 - 2478
  • [7] A NOTE ON CYCLES IN LOCALLY HAMILTONIAN AND LOCALLY HAMILTON-CONNECTED GRAPHS
    Tang, Long
    Vumar, Elkin
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (01) : 77 - 84
  • [8] Hamilton cycles in sparse locally connected graphs
    van Aardt, Susan A.
    Burger, Alewyn P.
    Frick, Marietjie
    Thomassen, Carsten
    de Wet, Johan P.
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 276 - 288
  • [9] ON THE TOPOLOGY OF LOCALLY 2-CONNECTED PEANO CONTINUA
    Chavez, M. J.
    Fernandez-Bayort, T.
    Quintero, A.
    Villar, M. T.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (02) : 499 - 527
  • [10] On open mappings of locally connected continua onto arcs
    Charatonik, JJ
    Charatonik, WJ
    Miklos, S
    Spyrou, P
    HOUSTON JOURNAL OF MATHEMATICS, 1998, 24 (01): : 21 - 43