Generic existence of fixed points for set-valued mappings

被引:23
|
作者
Reich, S [1 ]
Zaslavski, AJ [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
来源
SET-VALUED ANALYSIS | 2002年 / 10卷 / 04期
关键词
Banach space; complete metric space; fixed point; generic property; set-valued mapping;
D O I
10.1023/A:1020602030873
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first consider a complete metric space of nonexpansive set-valued mappings acting on a closed convex subset of a Banach space with a nonempty interior, and show that a generic mapping in this space has a fixed point. We then establish analogous results for two complete metric spaces of set-valued mappings with convex graphs.
引用
收藏
页码:287 / 296
页数:10
相关论文
共 50 条
  • [41] The Chebyshev selections and fixed points of set-valued mappings in Banach spaces with some uniform convexity
    Xiao, Jian-Zhong
    Zhu, Xing-Hua
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (5-6) : 1576 - 1583
  • [42] APPROXIMATE FIXED POINTS OF SOME SET-VALUED CONTRACTIONS
    Alizadeh, E.
    Mohammadi, B.
    Rezapour, Sh
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2015, 77 (03): : 69 - 74
  • [43] Porosity and Fixed Points of Nonexpansive Set-Valued Maps
    Lihui Peng
    Chong Li
    Set-Valued and Variational Analysis, 2014, 22 : 333 - 348
  • [44] The existence of zeros of set-valued mappings in reflexive Banach spaces
    Ren-you Zhong
    Xiang Liu
    Jiang-Hua Fan
    Optimization Letters, 2014, 8 : 1741 - 1751
  • [45] The existence of zeros of set-valued mappings in reflexive Banach spaces
    Zhong, Ren-you
    Liu, Xiang
    Fan, Jiang-Hua
    OPTIMIZATION LETTERS, 2014, 8 (05) : 1741 - 1751
  • [46] BEST PROXIMITY POINTS FOR A NEW TYPE OF SET-VALUED MAPPINGS
    Kostic, Aleksandar
    MATHEMATICA SLOVACA, 2019, 69 (06) : 1395 - 1402
  • [47] Common fixed point properties for a family of set-valued mappings
    Lau, Anthony To-Ming
    Yao, Liangjin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 459 (01) : 203 - 216
  • [48] A porosity theorem for a class of nonexpansive set-valued mappings
    Reich, Simeon
    Zaslavski, Alexander J.
    COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VII, 2017, 699 : 275 - 282
  • [49] Convergence Results for Contractive Type Set-Valued Mappings
    Zaslavski, Alexander J.
    AXIOMS, 2024, 13 (02)
  • [50] A local fixed point theorem for set-valued mappings on partial metric spaces
    Benterki, Abdessalem
    APPLIED GENERAL TOPOLOGY, 2016, 17 (01): : 37 - 49