Sharp Bounds for Trigonometric and Hyperbolic Functions with Application to Fractional Calculus

被引:5
作者
Stojiljkovic, Vuk [1 ]
Radojevic, Slobodan [2 ]
Cetin, Eyup [3 ,4 ]
Cavic, Vesna Sesum [5 ]
Radenovic, Stojan [2 ]
机构
[1] Univ Novi Sad, Fac Sci, Trg Dositeja Obradovica 3, Novi Sad 21000, Serbia
[2] Univ Belgrade, Fac Mech Engn, Kraljice Marije 16, Belgrade 11120, Serbia
[3] York Univ, Lab Ind & Appl Math, Toronto, ON M3J 1P3, Canada
[4] New York Business Global, 9591 Baltimore Ave 703, College Pk, MD 20741 USA
[5] Univ Belgrade, Gradevinski Fak, Bulevar Kralja Aleksandra 73, Belgrade 11000, Serbia
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 06期
关键词
polynomial bounds; L'Hopital's rule of monotonicity; Jordan's inequality; trigonometric functions;
D O I
10.3390/sym14061260
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sharp bounds for cosh(x)/x, sinh(x)/x, and sin(x)/x were obtained, as well as one new bound for e(x)+arctan(x)/root x. A new situation to note about the obtained boundaries is the symmetry in the upper and lower boundary, where the upper boundary differs by a constant from the lower boundary. New consequences of the inequalities were obtained in terms of the Riemann-Liovuille fractional integral and in terms of the standard integral.
引用
收藏
页数:9
相关论文
共 16 条
[1]  
Abramowitz M., 1964, Handbook of mathematical functions with formulas, graphs, and mathematical tables, V9th, DOI DOI 10.2307/2282672
[2]  
ANDERSON G. D., 1997, Conformal Invariants, Inequalities, and Quasiconformal Maps
[3]  
[Anonymous], 1998, PITMAN MONOGRAPHS SU
[4]  
Bagul Y.J., 2021, PUNJAB UNIV J MATH, DOI [10.21203/rs.3.rs-404784/v1, DOI 10.21203/RS.3.RS-404784/V1]
[5]   Generalized bounds for sine and cosine functions [J].
Bagul, Yogesh J. ;
Chesneau, Christophe .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (01)
[6]   Polynomial-Exponential Bounds for Some Trigonometric and Hyperbolic Functions [J].
Bagul, Yogesh J. ;
Dhaigude, Ramkrishna M. ;
Kostic, Marko ;
Chesneau, Christophe .
AXIOMS, 2021, 10 (04)
[7]  
Chouikha A, 2021, J RAMANUJAN MATH SOC, V36, P193
[8]  
Herrmann R., 2018, Fractional Calculus. An Introduction for Physicists, V3rd
[9]   Approximation by integral functions in the complex domain [J].
Kober, H. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1944, 56 (1-3) :7-31
[10]  
MITRINOVIC DS, 1970, ANAL INEQUALITIES