Intersection exponents for planar Brownian motion

被引:40
作者
Lawler, GF
Werner, W
机构
[1] Duke Univ, Dept Math, Durham, NC 27708 USA
[2] Univ Paris 11, Dept Math, F-91405 Orsay, France
关键词
Brownian motion; critical exponents; conformal invariance;
D O I
10.1214/aop/1022874810
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive properties concerning all intersection exponents for planar Brownian motion and we define generalized exponents that, loosely speaking, correspond to noninteger numbers of Brownian paths. Some of these properties lead to general conjectures concerning the exact value of these exponents.
引用
收藏
页码:1601 / 1642
页数:42
相关论文
共 34 条
[1]  
Ahlfors L. V., 1973, McGraw-Hill Series in Higher Mathematics
[2]   Holder regularity and dimension bounds for random curves [J].
Aizenman, M ;
Burchard, A .
DUKE MATHEMATICAL JOURNAL, 1999, 99 (03) :419-453
[3]  
AIZENMAN M, 1999, IN PRESS RANDOM STRU
[4]   NONINTERSECTION EXPONENTS FOR BROWNIAN PATHS .1. EXISTENCE AND AN INVARIANCE-PRINCIPLE [J].
BURDZY, K ;
LAWLER, GF .
PROBABILITY THEORY AND RELATED FIELDS, 1990, 84 (03) :393-410
[5]   NONINTERSECTION EXPONENTS FOR BROWNIAN PATHS .2. ESTIMATES AND APPLICATIONS TO A RANDOM FRACTAL [J].
BURDZY, K ;
LAWLER, GF .
ANNALS OF PROBABILITY, 1990, 18 (03) :981-1009
[6]   ON THE CRITICAL EXPONENT FOR RANDOM-WALK INTERSECTIONS [J].
BURDZY, K ;
LAWLER, GF ;
POLASKI, T .
JOURNAL OF STATISTICAL PHYSICS, 1989, 56 (1-2) :1-12
[7]  
Burdzy K, 1996, ANN PROBAB, V24, P125
[8]   AN EXTENSION OF A RESULT OF BURDZY AND LAWLER [J].
CRANSTON, MC ;
MOUNTFORD, TS .
PROBABILITY THEORY AND RELATED FIELDS, 1991, 89 (04) :487-502
[9]  
DUPLANTIER B, 1993, B SCI MATH, V117, P91
[10]   LOOP-ERASED SELF-AVOIDING WALKS IN 2 DIMENSIONS - EXACT CRITICAL EXPONENTS AND WINDING NUMBERS [J].
DUPLANTIER, B .
PHYSICA A, 1992, 191 (1-4) :516-522