In silico prediction of mitochondrial toxicity of chemicals using machine learning methods

被引:18
|
作者
Zhao, Piaopiao [1 ]
Peng, Yayuan [1 ]
Xu, Xuan [1 ]
Wang, Zhiyuan [1 ]
Wu, Zengrui [1 ]
Li, Weihua [1 ]
Tang, Yun [1 ]
Liu, Guixia [1 ]
机构
[1] East China Univ Sci & Technol, Shanghai Key Lab New Drug Design, Sch Pharm, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
applicability domain; computational toxicology; machine learning; mitochondrial toxicity; structural alert; INHIBITION; IMPAIRMENT; METABOLISM; MECHANISMS;
D O I
10.1002/jat.4141
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Mitochondria are important organelles in human cells, providing more than 95% of the energy. However, some drugs and environmental chemicals could induce mitochondrial dysfunction, which might cause complex diseases and even worsen the condition of patients with mitochondrial damage. Some drugs have been withdrawn from the market due to their severe mitochondrial toxicity, such as troglitazone. Therefore, there is an urgent need to develop models that could accurately predict the mitochondrial toxicity of chemicals. In this paper, suitable data were obtained from literature and databases first. Then nine types of fingerprints were used to characterize these compounds. Finally, different algorithms were used to build models. Meanwhile, the applicability domain of the prediction models was defined. We have also explored the structural alerts of mitochondrial toxicity, which would be helpful for medicinal chemists to better predict mitochondrial toxicity and further optimize lead compounds.
引用
收藏
页码:1518 / 1526
页数:9
相关论文
共 50 条
  • [41] Prediction of Parkinson's Disease Using Machine Learning Methods
    Zhang, Jiayu
    Zhou, Wenchao
    Yu, Hongmei
    Wang, Tong
    Wang, Xiaqiong
    Liu, Long
    Wen, Yalu
    BIOMOLECULES, 2023, 13 (12)
  • [42] Prediction of tensile strength of concrete using the machine learning methods
    Bagher Shemirani A.
    Lawaf M.P.
    Asian Journal of Civil Engineering, 2024, 25 (2) : 1207 - 1223
  • [43] Earnings management visualization and prediction using machine learning methods
    Veganzones, David
    Severin, Eric
    INTERNATIONAL JOURNAL OF ACCOUNTING INFORMATION SYSTEMS, 2025, 56
  • [44] Mobile Service Experience Prediction Using Machine Learning Methods
    Yigit, Ibrahim Onuralp
    Ciftci, Selami
    Kalyoncu, Feyzullah Alim
    Kaya, Tolga
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [45] Prediction of Cesarean Childbirth using Ensemble Machine Learning Methods
    Khan, Nafiz Imtiaz
    Mahmud, Tahasin
    Islam, Muhammad Nazrul
    Mustafina, Sumaiya Nuha
    22ND INTERNATIONAL CONFERENCE ON INFORMATION INTEGRATION AND WEB-BASED APPLICATIONS & SERVICES (IIWAS2020), 2020, : 331 - 339
  • [46] Agricultural loan delinquency prediction using machine learning methods
    Chen, Jian
    Katchova, Ani L.
    Zhou, Chenxi
    INTERNATIONAL FOOD AND AGRIBUSINESS MANAGEMENT REVIEW, 2021, 24 (05): : 797 - 812
  • [47] Prediction of Phage Virion Proteins Using Machine Learning Methods
    Barman, Ranjan Kumar
    Chakrabarti, Alok Kumar
    Dutta, Shanta
    MOLECULES, 2023, 28 (05):
  • [48] In Silico Prediction of Metabolic Epoxidation for Drug-like Molecules via Machine Learning Methods
    Hu, Jiajing
    Cai, Yingchun
    Li, Weihua
    Liu, Guixia
    Tang, Yun
    MOLECULAR INFORMATICS, 2020, 39 (08)
  • [49] Machine Learning for Ionic Liquid Toxicity Prediction
    Wang, Zihao
    Song, Zhen
    Zhou, Teng
    PROCESSES, 2021, 9 (01) : 1 - 10
  • [50] Severity Prediction with Machine Learning Methods
    Geyik, Buket
    Kara, Medine
    2ND INTERNATIONAL CONGRESS ON HUMAN-COMPUTER INTERACTION, OPTIMIZATION AND ROBOTIC APPLICATIONS (HORA 2020), 2020, : 382 - 388