Optimally controlled quantum discrimination and estimation

被引:22
作者
Basilewitsch, Daniel [1 ]
Yuan, Haidong [2 ]
Koch, Christiane P. [1 ,3 ,4 ]
机构
[1] Univ Kassel, Theoret Phys, D-34132 Kassel, Germany
[2] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Shatin, Hong Kong, Peoples R China
[3] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, Arnimallee 14, D-14195 Berlin, Germany
[4] Free Univ Berlin, Fachbereich Phys, Arnimallee 14, D-14195 Berlin, Germany
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 03期
关键词
STEINS LEMMA; IMPROVEMENT; DISTANCE; STATES;
D O I
10.1103/PhysRevResearch.2.033396
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum discrimination and estimation are pivotal for many quantum technologies, and their performance depends on the optimal choice of probe state and measurement. Here we show that their performance can be further improved by suitably tailoring the pulses that make up the interferometer. Developing an optimal control framework and applying it to the discrimination and estimation of a magnetic field in the presence of noise, we find an increase in the overall achievable state distinguishability. Moreover, the maximum distinguishability can be stabilized for times that are more than an order of magnitude longer than the decoherence time.
引用
收藏
页数:8
相关论文
共 75 条
  • [1] Statistical distinguishability between unitary operations -: art. no. 177901
    Acín, A
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (17)
  • [2] Quantum Metrology in Open Systems: Dissipative Cramer-Rao Bound
    Alipour, S.
    Mehboudi, M.
    Rezakhani, A. T.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (12)
  • [3] [Anonymous], 2011, Quantum Computation and Quantum Information: 10th Anniversary Edition
  • [4] Discriminating states:: The quantum Chernoff bound
    Audenaert, K. M. R.
    Calsamiglia, J.
    Munoz-Tapia, R.
    Bagan, E.
    Masanes, Ll.
    Acin, A.
    Verstraete, F.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (16)
  • [5] Asymptotic error rates in quantum hypothesis testing
    Audenaert, K. M. R.
    Nussbaum, M.
    Szkola, A.
    Verstraete, F.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (01) : 251 - 283
  • [6] Quantum Optimal Control for Mixed State Squeezing in Cavity Optomechanics
    Basilewitsch, Daniel
    Koch, Christiane P.
    Reich, Daniel M.
    [J]. ADVANCED QUANTUM TECHNOLOGIES, 2019, 2 (3-4)
  • [7] Nonlinear Quantum Metrology of Many-Body Open Systems
    Beau, M.
    del Campo, A.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (01)
  • [8] Quantum Bell-Ziv-Zakai Bounds and Heisenberg Limits for Waveform Estimation
    Berry, Dominic W.
    Tsang, Mankei
    Hall, Michael J. W.
    Wiseman, Howard M.
    [J]. PHYSICAL REVIEW X, 2015, 5 (03):
  • [9] Generalized uncertainty relations: Theory, examples, and Lorentz invariance
    Braunstein, SL
    Caves, CM
    Milburn, GJ
    [J]. ANNALS OF PHYSICS, 1996, 247 (01) : 135 - 173
  • [10] STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES
    BRAUNSTEIN, SL
    CAVES, CM
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (22) : 3439 - 3443