DeepCRISPR: optimized CRISPR guide RNA design by deep learning

被引:269
作者
Chuai, Guohui [1 ,2 ]
Ma, Hanhui [5 ]
Yan, Jifang [1 ,2 ]
Chen, Ming [4 ]
Hong, Nanfang [1 ,2 ]
Xue, Dongyu [1 ,2 ]
Zhou, Chi [1 ,2 ]
Zhu, Chenyu [1 ,2 ]
Chen, Ke [1 ,2 ]
Duan, Bin [1 ,2 ]
Gu, Feng [6 ,7 ,8 ]
Qu, Sheng [1 ,2 ]
Huang, Deshuang [3 ]
Wei, Jia [4 ]
Liu, Qi [1 ,2 ]
机构
[1] Tongji Univ, Dept Endocrinol & Metab, Shanghai Peoples Hosp 10, Shanghai 20009, Peoples R China
[2] Tongji Univ, Sch Life Sci & Technol, Bioinformat Dept, Shanghai 20009, Peoples R China
[3] Tongji Univ, Sch Elect & Informat Engn, Machine Learning & Syst Biol Lab, Shanghai 201804, Peoples R China
[4] AstraZeneca, Innovat Ctr China, R&D Informat, 199 Liangjing Rd, Shanghai 201203, Peoples R China
[5] ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai, Peoples R China
[6] Wenzhou Med Univ, State Key Lab Cultivat Base, Eye Hosp, Wenzhou 325027, Zhejiang, Peoples R China
[7] Wenzhou Med Univ, Key Lab Vis Sci, Minist Hlth, Eye Hosp, Wenzhou 325027, Zhejiang, Peoples R China
[8] Wenzhou Med Univ, Zhejiang Prov Key Lab Ophthalmol & Optometry, Sch Ophthalmol & Optometry, Eye Hosp, Wenzhou 325027, Zhejiang, Peoples R China
来源
GENOME BIOLOGY | 2018年 / 19卷
基金
中国国家自然科学基金;
关键词
CRISPR system; Gene knockout; Deep learning; On-targets; Off-targets; OFF-TARGET CLEAVAGE; GENOME; SEQ; DNA; SPECIFICITIES; PREDICTION; NUCLEASES; SELECTION; SGRNAS;
D O I
10.1186/s13059-018-1459-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A major challenge for effective application of CRISPR systems is to accurately predict the single guide RNA (sgRNA) on-target knockout efficacy and off-target profile, which would facilitate the optimized design of sgRNAs with high sensitivity and specificity. Here we present DeepCRISPR, a comprehensive computational platform to unify sgRNA on-target and off-target site prediction into one framework with deep learning, surpassing available state-of-the-art in silico tools. In addition, DeepCRISPR fully automates the identification of sequence and epigenetic features that may affect sgRNA knockout efficacy in a data-driven manner. DeepCRISPR is available at http://www.deeperispr.net/.
引用
收藏
页数:18
相关论文
共 55 条
  • [11] Chuai G, 2018, DEEPCRISPR OPTIMIZED
  • [12] In Silico Meets In Vivo: Towarcs Computational CRISPR-Based sgRNA Design
    Chuai, Guo-hui
    Wang, Qi-Long
    Liu, Qi
    [J]. TRENDS IN BIOTECHNOLOGY, 2017, 35 (01) : 12 - 21
  • [13] Multiplex Genome Engineering Using CRISPR/Cas Systems
    Cong, Le
    Ran, F. Ann
    Cox, David
    Lin, Shuailiang
    Barretto, Robert
    Habib, Naomi
    Hsu, Patrick D.
    Wu, Xuebing
    Jiang, Wenyan
    Marraffini, Luciano A.
    Zhang, Feng
    [J]. SCIENCE, 2013, 339 (6121) : 819 - 823
  • [14] Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9
    Doench, John G.
    Fusi, Nicolo
    Sullender, Meagan
    Hegde, Mudra
    Vaimberg, Emma W.
    Donovan, Katherine F.
    Smith, Ian
    Tothova, Zuzana
    Wilen, Craig
    Orchard, Robert
    Virgin, Herbert W.
    Listgarten, Jennifer
    Root, David E.
    [J]. NATURE BIOTECHNOLOGY, 2016, 34 (02) : 184 - +
  • [15] Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation
    Doench, John G.
    Hartenian, Ella
    Graham, Daniel B.
    Tothova, Zuzana
    Hegde, Mudra
    Smith, Ian
    Sullender, Meagan
    Ebert, Benjamin L.
    Xavier, Ramnik J.
    Root, David E.
    [J]. NATURE BIOTECHNOLOGY, 2014, 32 (12) : 1262 - U130
  • [16] The new frontier of genome engineering with CRISPR-Cas9
    Doudna, Jennifer A.
    Charpentier, Emmanuelle
    [J]. SCIENCE, 2014, 346 (6213) : 1077 - +
  • [17] The ENCODE (ENCyclopedia of DNA elements) Project
    Feingold, EA
    Good, PJ
    Guyer, MS
    Kamholz, S
    Liefer, L
    Wetterstrand, K
    Collins, FS
    Gingeras, TR
    Kampa, D
    Sekinger, EA
    Cheng, J
    Hirsch, H
    Ghosh, S
    Zhu, Z
    Pate, S
    Piccolboni, A
    Yang, A
    Tammana, H
    Bekiranov, S
    Kapranov, P
    Harrison, R
    Church, G
    Struhl, K
    Ren, B
    Kim, TH
    Barrera, LO
    Qu, C
    Van Calcar, S
    Luna, R
    Glass, CK
    Rosenfeld, MG
    Guigo, R
    Antonarakis, SE
    Birney, E
    Brent, M
    Pachter, L
    Reymond, A
    Dermitzakis, ET
    Dewey, C
    Keefe, D
    Denoeud, F
    Lagarde, J
    Ashurst, J
    Hubbard, T
    Wesselink, JJ
    Castelo, R
    Eyras, E
    Myers, RM
    Sidow, A
    Batzoglou, S
    [J]. SCIENCE, 2004, 306 (5696) : 636 - 640
  • [18] Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases
    Frock, Richard L.
    Hu, Jiazhi
    Meyers, Robin M.
    Ho, Yu-Jui
    Kii, Erina
    Alt, Frederick W.
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (02) : 179 - 186
  • [19] High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
    Fu, Yanfang
    Foden, Jennifer A.
    Khayter, Cyd
    Maeder, Morgan L.
    Reyon, Deepak
    Joung, J. Keith
    Sander, Jeffry D.
    [J]. NATURE BIOTECHNOLOGY, 2013, 31 (09) : 822 - +
  • [20] Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR
    Haeussler, Maximilian
    Schoenig, Kai
    Eckert, Helene
    Eschstruth, Alexis
    Mianne, Joffrey
    Renaud, Jean-Baptiste
    Schneider-Maunoury, Sylvie
    Shkumatava, Alena
    Teboul, Lydia
    Kent, Jim
    Joly, Jean-Stephane
    Concordet, Jean-Paul
    [J]. GENOME BIOLOGY, 2016, 17