DeepCRISPR: optimized CRISPR guide RNA design by deep learning

被引:269
作者
Chuai, Guohui [1 ,2 ]
Ma, Hanhui [5 ]
Yan, Jifang [1 ,2 ]
Chen, Ming [4 ]
Hong, Nanfang [1 ,2 ]
Xue, Dongyu [1 ,2 ]
Zhou, Chi [1 ,2 ]
Zhu, Chenyu [1 ,2 ]
Chen, Ke [1 ,2 ]
Duan, Bin [1 ,2 ]
Gu, Feng [6 ,7 ,8 ]
Qu, Sheng [1 ,2 ]
Huang, Deshuang [3 ]
Wei, Jia [4 ]
Liu, Qi [1 ,2 ]
机构
[1] Tongji Univ, Dept Endocrinol & Metab, Shanghai Peoples Hosp 10, Shanghai 20009, Peoples R China
[2] Tongji Univ, Sch Life Sci & Technol, Bioinformat Dept, Shanghai 20009, Peoples R China
[3] Tongji Univ, Sch Elect & Informat Engn, Machine Learning & Syst Biol Lab, Shanghai 201804, Peoples R China
[4] AstraZeneca, Innovat Ctr China, R&D Informat, 199 Liangjing Rd, Shanghai 201203, Peoples R China
[5] ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai, Peoples R China
[6] Wenzhou Med Univ, State Key Lab Cultivat Base, Eye Hosp, Wenzhou 325027, Zhejiang, Peoples R China
[7] Wenzhou Med Univ, Key Lab Vis Sci, Minist Hlth, Eye Hosp, Wenzhou 325027, Zhejiang, Peoples R China
[8] Wenzhou Med Univ, Zhejiang Prov Key Lab Ophthalmol & Optometry, Sch Ophthalmol & Optometry, Eye Hosp, Wenzhou 325027, Zhejiang, Peoples R China
来源
GENOME BIOLOGY | 2018年 / 19卷
基金
中国国家自然科学基金;
关键词
CRISPR system; Gene knockout; Deep learning; On-targets; Off-targets; OFF-TARGET CLEAVAGE; GENOME; SEQ; DNA; SPECIFICITIES; PREDICTION; NUCLEASES; SELECTION; SGRNAS;
D O I
10.1186/s13059-018-1459-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A major challenge for effective application of CRISPR systems is to accurately predict the single guide RNA (sgRNA) on-target knockout efficacy and off-target profile, which would facilitate the optimized design of sgRNAs with high sensitivity and specificity. Here we present DeepCRISPR, a comprehensive computational platform to unify sgRNA on-target and off-target site prediction into one framework with deep learning, surpassing available state-of-the-art in silico tools. In addition, DeepCRISPR fully automates the identification of sequence and epigenetic features that may affect sgRNA knockout efficacy in a data-driven manner. DeepCRISPR is available at http://www.deeperispr.net/.
引用
收藏
页数:18
相关论文
共 55 条
  • [1] Aach J, 2014, bioRxiv
  • [2] A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action
    Abadi, Shiran
    Yan, Winston X.
    Amar, David
    Mayrose, Itay
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (10)
  • [3] Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
    Alipanahi, Babak
    Delong, Andrew
    Weirauch, Matthew T.
    Frey, Brendan J.
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (08) : 831 - +
  • [4] Badaro G, 2013, INT WIREL COMMUN, P349, DOI 10.1109/IWCMC.2013.6583584
  • [5] Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases
    Bae, Sangsu
    Park, Jeongbin
    Kim, Jin-Soo
    [J]. BIOINFORMATICS, 2014, 30 (10) : 1473 - 1475
  • [6] Representation Learning: A Review and New Perspectives
    Bengio, Yoshua
    Courville, Aaron
    Vincent, Pascal
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) : 1798 - 1828
  • [7] The use of the area under the roc curve in the evaluation of machine learning algorithms
    Bradley, AP
    [J]. PATTERN RECOGNITION, 1997, 30 (07) : 1145 - 1159
  • [8] sgRNA Scorer 2.0: A Species-Independent Model To Predict CRISPR/Cas9 Activity
    Chari, Raj
    Yeo, Nan Cher
    Chavez, Alejandro
    Church, George M.
    [J]. ACS SYNTHETIC BIOLOGY, 2017, 6 (05): : 902 - 904
  • [9] Chari R, 2015, NAT METHODS, V12, P823, DOI [10.1038/NMETH.3473, 10.1038/nmeth.3473]
  • [10] Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases
    Cho, Seung Woo
    Kim, Sojung
    Kim, Yongsub
    Kweon, Jiyeon
    Kim, Heon Seok
    Bae, Sangsu
    Kim, Jin-Soo
    [J]. GENOME RESEARCH, 2014, 24 (01) : 132 - 141