Multiplying unitary random matrices - universality and spectral properties

被引:29
|
作者
Janik, RA [1 ]
Wieczorek, W [1 ]
机构
[1] Jagiellonian Univ, M Smoluchowski Inst Phys, PL-30059 Krakow, Poland
来源
关键词
D O I
10.1088/0305-4470/37/25/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we calculate, in the large N limit, the eigenvalue density of an infinite product of random unitary matrices, each of them generated by a random Hermitian matrix. This is equivalent to solving the unitary diffusion generated by a Hamiltonian random in time. We find that the average eigenvalue density is universal and depends only on the second moment of the generator of the stochastic evolution. We find indications of critical behaviour (eigenvalue spacing scaling like 1/N-3/4) close to theta = pi for a specific critical evolution time t(c).
引用
收藏
页码:6521 / 6529
页数:9
相关论文
共 50 条
  • [41] Random Unitary Matrices Associated to a Graph
    Kondratiuk, P.
    Zyczkowski, K.
    ACTA PHYSICA POLONICA A, 2013, 124 (06) : 1098 - 1105
  • [42] Spectral analysis of unitary band matrices
    Bourget, O
    Howland, JS
    Joye, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 234 (02) : 191 - 227
  • [43] Spectral Analysis of Unitary Band Matrices
    Olivier Bourget
    James S. Howland
    Alain Joye
    Communications in Mathematical Physics, 2003, 234 : 191 - 227
  • [44] Multiplying Matrices Without Multiplying
    Blalock, Davis
    Guttag, John
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [45] Spectral properties of non-gaussian random matrices
    Vesely, Martin
    SPSM 2010: STOCHASTIC AND PHYSICAL MONITORING SYSTEMS, 2010, : 171 - 180
  • [46] Spectral Properties of Random Matrices for Stochastic Block Model
    Avrachenkov, Konstantin
    Cottatellucci, Laura
    Kadavankandy, Arun
    2015 13TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT), 2015, : 537 - 544
  • [47] Universality in the fluctuation of eigenvalues of random circulant matrices
    Adhikari, Kartick
    Saha, Koushik
    STATISTICS & PROBABILITY LETTERS, 2018, 138 : 1 - 8
  • [48] Random matrices: Universality of local eigenvalue statistics
    Tao, Terence
    Vu, Van
    ACTA MATHEMATICA, 2011, 206 (01) : 127 - 204
  • [49] Universality of random matrices and local relaxation flow
    László Erdős
    Benjamin Schlein
    Horng-Tzer Yau
    Inventiones mathematicae, 2011, 185 : 75 - 119
  • [50] Random matrices, fermions, collective fields, and universality
    B. Sakita
    Foundations of Physics, 1997, 27 : 1519 - 1525