Multiplying unitary random matrices - universality and spectral properties

被引:29
|
作者
Janik, RA [1 ]
Wieczorek, W [1 ]
机构
[1] Jagiellonian Univ, M Smoluchowski Inst Phys, PL-30059 Krakow, Poland
来源
关键词
D O I
10.1088/0305-4470/37/25/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we calculate, in the large N limit, the eigenvalue density of an infinite product of random unitary matrices, each of them generated by a random Hermitian matrix. This is equivalent to solving the unitary diffusion generated by a Hamiltonian random in time. We find that the average eigenvalue density is universal and depends only on the second moment of the generator of the stochastic evolution. We find indications of critical behaviour (eigenvalue spacing scaling like 1/N-3/4) close to theta = pi for a specific critical evolution time t(c).
引用
收藏
页码:6521 / 6529
页数:9
相关论文
共 50 条