The use of two-point Taylor expansions in singular one-dimensional boundary value problems I

被引:1
作者
Ferreir, Chelo [1 ]
Lopez, Jose L. [2 ,3 ]
Sinusia, Ester Perez [1 ]
机构
[1] Univ Zaragoza, IUMA, Dept Matemat Aplicada, Zaragoza, Spain
[2] Univ Publ Navarra, Dept Ingn Matemat & Informat, Navarra, Spain
[3] INAMAT, Navarra, Spain
关键词
Second-order linear differential equations; Regular singular point; Boundary value problem; Frobenius method; Two-point Taylor expansions; DIFFERENTIAL-EQUATIONS;
D O I
10.1016/j.jmaa.2018.03.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the second-order linear differential equation (x+1)y"1+f (x)y'+g(x)y = h(x) in the interval (-1,1) with initial conditions or boundary conditions (Dirichlet, Neumann or mixed Dirichlet Neumann) The functions f(x), g(x) and h(x) are analytic in a Cassini disk D-r. with foci at x = +/- 1 containing the interval [-1,1]. Then, the end point of the interval x = -1 may be a regular singular point of the differential equation. The two-point Taylor expansion of the solution y(x) at the end points +/- 1 is used to study the space of analytic solutions in D-r. of the differential equation, and to give a criterion for the existence and uniqueness of analytic solutions of the boundary value problem. This method is constructive and provides the two-point Taylor approximation of the analytic solutions when they odst. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:708 / 725
页数:18
相关论文
共 10 条
  • [1] [Anonymous], 2010, Handbook of Mathematical Functions
  • [2] [Anonymous], 1998, Greens Functions and Boundary Value Problems
  • [3] Taylor polynomial solutions of linear differential equations
    Kesan, C
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2003, 142 (01) : 155 - 165
  • [4] King A. C., 2003, Differential Equations: Linear, Nonlinear, Ordinary, Partial
  • [5] Lax P.D., 1954, Annals of Mathematics Studies, P167
  • [6] Two-point Taylor expansions of analytic functions
    López, JL
    Temme, NM
    [J]. STUDIES IN APPLIED MATHEMATICS, 2002, 109 (04) : 297 - 311
  • [7] TWO-POINT TAYLOR EXPANSIONS AND ONE-DIMENSIONAL BOUNDARY VALUE PROBLEMS
    Lopez, Jose L.
    Perez Sinusia, Ester
    [J]. MATHEMATICS OF COMPUTATION, 2010, 79 (272) : 2103 - 2115
  • [8] Multi-point Taylor approximations in one-dimensional linear boundary value problems
    Lopez, Jose L.
    Sinusia, Ester Perez
    Temme, Nico M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) : 519 - 527
  • [9] Olde Daalhuis AB, 1998, SIAM REV, V40, P463, DOI 10.1137/S0036144597315341
  • [10] Serer M., 1996, INT J MATH ED SCI TE, V27, P821