The use of two-point Taylor expansions in singular one-dimensional boundary value problems I

被引:1
作者
Ferreir, Chelo [1 ]
Lopez, Jose L. [2 ,3 ]
Sinusia, Ester Perez [1 ]
机构
[1] Univ Zaragoza, IUMA, Dept Matemat Aplicada, Zaragoza, Spain
[2] Univ Publ Navarra, Dept Ingn Matemat & Informat, Navarra, Spain
[3] INAMAT, Navarra, Spain
关键词
Second-order linear differential equations; Regular singular point; Boundary value problem; Frobenius method; Two-point Taylor expansions; DIFFERENTIAL-EQUATIONS;
D O I
10.1016/j.jmaa.2018.03.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the second-order linear differential equation (x+1)y"1+f (x)y'+g(x)y = h(x) in the interval (-1,1) with initial conditions or boundary conditions (Dirichlet, Neumann or mixed Dirichlet Neumann) The functions f(x), g(x) and h(x) are analytic in a Cassini disk D-r. with foci at x = +/- 1 containing the interval [-1,1]. Then, the end point of the interval x = -1 may be a regular singular point of the differential equation. The two-point Taylor expansion of the solution y(x) at the end points +/- 1 is used to study the space of analytic solutions in D-r. of the differential equation, and to give a criterion for the existence and uniqueness of analytic solutions of the boundary value problem. This method is constructive and provides the two-point Taylor approximation of the analytic solutions when they odst. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:708 / 725
页数:18
相关论文
共 10 条
[1]  
[Anonymous], 2010, Handbook of Mathematical Functions
[2]  
[Anonymous], 1998, Greens Functions and Boundary Value Problems
[3]   Taylor polynomial solutions of linear differential equations [J].
Kesan, C .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 142 (01) :155-165
[4]  
King A. C., 2003, Differential Equations: Linear, Nonlinear, Ordinary, Partial
[5]  
Lax P.D., 1954, Annals of Mathematics Studies, P167
[6]   Two-point Taylor expansions of analytic functions [J].
López, JL ;
Temme, NM .
STUDIES IN APPLIED MATHEMATICS, 2002, 109 (04) :297-311
[7]   TWO-POINT TAYLOR EXPANSIONS AND ONE-DIMENSIONAL BOUNDARY VALUE PROBLEMS [J].
Lopez, Jose L. ;
Perez Sinusia, Ester .
MATHEMATICS OF COMPUTATION, 2010, 79 (272) :2103-2115
[8]   Multi-point Taylor approximations in one-dimensional linear boundary value problems [J].
Lopez, Jose L. ;
Sinusia, Ester Perez ;
Temme, Nico M. .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) :519-527
[9]  
Olde Daalhuis AB, 1998, SIAM REV, V40, P463, DOI 10.1137/S0036144597315341
[10]  
Serer M., 1996, INT J MATH ED SCI TE, V27, P821