Self-Induced Transparency in Warm and Strongly Interacting Rydberg Gases

被引:15
作者
Bai, Zhengyang [1 ,2 ,3 ]
Adams, Charles S. [4 ]
Huang, Guoxiang [1 ]
Li, Weibin [2 ,3 ]
机构
[1] East China Normal Univ, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
[2] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
[3] Univ Nottingham, Ctr Math & Theoret Phys Quantum Nonequilibrium Sy, Nottingham NG7 2RD, England
[4] Univ Durham, Dept Phys, Joint Quantum Ctr JQC DurhamNewcastle, South Rd, Durham DH1 3LE, England
基金
英国工程与自然科学研究理事会; 美国国家科学基金会; 中国博士后科学基金; 欧盟地平线“2020”;
关键词
NONLINEAR OPTICS; PHOTONS; STATES; ATOMS; GATES;
D O I
10.1103/PhysRevLett.125.263605
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study dispersive optical nonlinearities of short pulses propagating in high number density, warm atomic vapors where the laser resonantly excites atoms to Rydberg P states via a single-photon transition. Three different regimes of the light-atom interaction, dominated by either Doppler broadening, Rydberg atom interactions, or decay due to thermal collisions between ground state and Rydberg atoms, are found. We show that using fast Rabi flopping and strong Rydberg atom interactions, both in the order of gigahertz, can overcome the Doppler effect as well as collisional decay, leading to a sizable dispersive optical nonlinearity on nanosecond timescales. In this regime, self-induced transparency (SIT) emerges when areas of the nanosecond pulse are determined primarily by the Rydberg atom interaction, rather than the area theorem of interaction-free SIT. We identify, both numerically and analytically, the condition to realize Rydberg SIT. Our study contributes to efforts in achieving quantum information processing using glass cell technologies.
引用
收藏
页数:6
相关论文
共 63 条
  • [1] Agrawal P. G. P., 2012, NONLINEAR FIBER OPTI
  • [2] Stable single light bullets and vortices and their active control in cold Rydberg gases
    Bai, Zhengyang
    Li, Weibin
    Huang, Guoxiang
    [J]. OPTICA, 2019, 6 (03): : 309 - 317
  • [3] Enhanced third-order and fifth-order Kerr nonlinearities in a cold atomic system via Rydberg-Rydberg interaction
    Bai, Zhengyang
    Huang, Guoxiang
    [J]. OPTICS EXPRESS, 2016, 24 (05): : 4442 - 4461
  • [4] Evidence for Strong van der Waals Type Rydberg-Rydberg Interaction in a Thermal Vapor
    Baluktsian, T.
    Huber, B.
    Loew, R.
    Pfau, T.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (12)
  • [5] Single-Photon Switch Based on Rydberg Blockade
    Baur, Simon
    Tiarks, Daniel
    Rempe, Gerhard
    Duerr, Stephan
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (07)
  • [6] COLLISION-THEORY OF RYDBERG ATOMS WITH NEUTRAL AND CHARGED-PARTICLES
    BEIGMAN, IL
    LEBEDEV, VS
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 250 (3-5): : 95 - 328
  • [7] Observation of ultralong-range Rydberg molecules
    Bendkowsky, Vera
    Butscher, Bjoern
    Nipper, Johannes
    Shaffer, James P.
    Loew, Robert
    Pfau, Tilman
    [J]. NATURE, 2009, 458 (7241) : 1005 - U76
  • [8] Boyd JP, 2001, CHEBYSHEV FOURIER SP
  • [9] Coherent Doppler narrowing in a thin vapor cell: Observation of the Dicke regime in the optical domain
    Briaudeau, S
    Saltiel, S
    Nienhuis, G
    Bloch, D
    Ducloy, M
    [J]. PHYSICAL REVIEW A, 1998, 57 (05): : R3169 - R3172
  • [10] Busche H, 2017, NAT PHYS, V13, P655, DOI [10.1038/NPHYS4058, 10.1038/nphys4058]