An optimal probabilistic graphical model for point set matching

被引:0
|
作者
Caetano, TS [1 ]
Caelli, T
Barone, DAC
机构
[1] Univ Alberta, Dept Comp Sci, Edmonton, AB T6G 2E8, Canada
[2] Univ Fed Rio Grande Sul, Inst Informat, BR-15064 Porto Alegre, RS, Brazil
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a probabilistic graphical model for point set matching. By using a result about the redundancy of the pairwise distances in a point set, we represent the binary relations over a simple triangulated graph that retains the same informational content as the complete graph. The maximal clique size of this resultant graph is independent of the point set sizes, what enables us to perform exact inference in polynomial time with a Junction Tree algorithm. The resulting technique is optimal in the Maximum a Posteriori sense. Experiments show that the algorithm significantly outperforms standard probabilistic relaxation labeling.
引用
收藏
页码:162 / 170
页数:9
相关论文
共 50 条
  • [41] Retinal Verification Using Point Set Matching
    Ekka, Bijay K.
    Puhan, N. B.
    Panda, Rashmi
    2ND INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN) 2015, 2015, : 159 - 163
  • [42] Bayesian point set matching with translation uncertainty
    Dogan, S
    Moses, RL
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 4044 - 4044
  • [43] A Graphical Model Approach for Matching Partial Signatures
    Du, Xianzhi
    Doermann, David
    AbdAlmageed, Wad
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 1465 - 1472
  • [44] Graphical models for graph matching: Approximate models and optimal algorithms
    Caelli, T
    Caetano, T
    PATTERN RECOGNITION LETTERS, 2005, 26 (03) : 339 - 346
  • [45] Adaptive Hierarchical Probabilistic Model Using Structured Variational Inference for Point Set Registration
    He, Qiqi
    Zhou, Jie
    Xu, Shijin
    Yang, Yang
    Yu, Rui
    Liu, Yuhe
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (11) : 2784 - 2798
  • [46] A probabilistic graphical model based stochastic input model construction
    Wan, Jiang
    Zabaras, Nicholas
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 272 : 664 - 685
  • [47] A Probabilistic Method for Point Matching in the Presence of Noise and Degeneracy
    Daniel Keren
    Journal of Mathematical Imaging and Vision, 2009, 33
  • [48] A probabilistic framework for robust and accurate matching of point clouds
    Biber, P
    Fleck, S
    Strasser, W
    PATTERN RECOGNITION, 2004, 3175 : 480 - 487
  • [49] A Probabilistic Method for Point Matching in the Presence of Noise and Degeneracy
    Keren, Daniel
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2009, 33 (03) : 338 - 346
  • [50] Probabilistic model for schema understanding and matching
    Ratinov, LA
    Shimony, SE
    Gudes, E
    2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 4768 - 4773