A novel nano-porous aluminum substrate with anodizing treatment to encapsulate 1-tetrapropanol as composite phase change materials for thermal energy utilization

被引:11
作者
Cheng, Fei [1 ,2 ]
Chen, Guo [1 ]
Lv, Zhenfei [1 ]
Yang, Chen [1 ]
Huang, Zhaohui [1 ]
Fang, Minghao [1 ]
Liu, Yan'gai [1 ]
Wu, Xiaowen [1 ]
Min, Xin [1 ]
机构
[1] China Univ Geosci Beijing, Sch Mat Sci & Technol, Natl Lab Mineral Mat, Beijing Key Lab Mat Utilizat Nonmetall Minerals &, Beijing 100083, Peoples R China
[2] Univ Western Australia, Dept Mech Engn, Perth, WA 6009, Australia
关键词
Nano-porous film; Anodizing surface treatment; Aluminum substrate; Thermal conductivity enhancement; Cooling materials; EXPANDED VERMICULITE; POLYETHYLENE-GLYCOL; CONDUCTIVITY; STORAGE; CARBON; ACID; PERFORMANCE; BEHAVIOR; DIATOMITE; PARAFFIN;
D O I
10.1016/j.cej.2020.124588
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, an innovative matrix material has been designed and prepared for supporting phase change materials (PCMs) to optimize the thermal property of composite PCM. The abandoned thin-slice aluminum substrate (TS-AS) is etched electrochemically into porous layer with peak-valley structure via anodizing surface treatment, nano-porous Al2O3 film growing on the TS-AS surface is used to encapsulate 1-tetrapropanol (1-TD) to prepare nano-porous TS-AS/1-TD composite PCM. According to thermal properties test results, the melting temperature and phase change latent heat (PCHL) of TS-AS/1-TD composite are 36.9 degrees C and 97.4 J/g, and its thermal conductivity is enhanced by 560.0% compared to pure 1-TD by introducing porous TS-AS, both these thermal properties show excellent sustainability maintaining only +/- 1.4% variation even after 400 times melting/freezing thermal cycles, while the composite PCM performs good thermal stability beyond 144.7 degrees C, which enables them to behave as thermal energy absorbing materials applied to cooling the generated heat from running precision device. Besides, the anodizing mechanism inspires the further optimization of aluminum substrate or other metal substrates by regulating porous layer morphology and thickness.
引用
收藏
页数:10
相关论文
共 47 条
[21]   Graphene-nickel/n-carboxylic acids composites as form-stable phase change materials for thermal energy storage [J].
Liang, Weidong ;
Zhang, Guodong ;
Sun, Hanxue ;
Chen, Pinsong ;
Zhu, Zhaoqi ;
Li, An .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 132 :425-430
[22]   Palmitic acid/polyvinyl butyral/expanded graphite composites as form-stable phase change materials for solar thermal energy storage [J].
Lin, Yaxue ;
Zhu, Chuqiao ;
Alva, Guruprasad ;
Fang, Guiyin .
APPLIED ENERGY, 2018, 228 :1801-1809
[23]   Experimental study on the thermal performance of capric acid-myristyl alcohol/expanded perlite composite phase change materials for thermal energy storage [J].
Liu, Chenzhen ;
Luo, Chengyuan ;
Xu, Taotao ;
Lv, Peizhao ;
Rao, Zhonghao .
SOLAR ENERGY, 2019, 191 :585-595
[24]   Effect of covalent functionalization and phase change matrix on heat transfer across graphene/phase change material interfaces [J].
Liu, Yuanjie ;
Zhang, Dong .
APPLIED THERMAL ENGINEERING, 2019, 151 :38-45
[25]   Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications [J].
Lv, Peizhao ;
Liu, Chenzhen ;
Rao, Zhonghao .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 68 :707-726
[26]   Preparation of capric acid/halloysite nanotube composite as form-stable phase change material for thermal energy storage [J].
Mei, Dandan ;
Zhang, Bing ;
Liu, Ruichao ;
Zhang, Yatao ;
Liu, Jindun .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (10) :2772-2777
[27]   Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage [J].
Qi, Guoqiang ;
Yang, Jie ;
Bao, Ruiying ;
Xia, Dongyun ;
Cao, Min ;
Yang, Wei ;
Yang, Mingbo ;
Wei, Dacheng .
NANO RESEARCH, 2017, 10 (03) :802-813
[28]   Diatomite: A promising natural candidate as carrier material for low, middle and high temperature phase change material [J].
Qian, Tingting ;
Li, Jinhong ;
Min, Xin ;
Deng, Yong ;
Guan, Weimin ;
Ning, Lei .
ENERGY CONVERSION AND MANAGEMENT, 2015, 98 :34-45
[29]   Invisible energy policies: A new agenda for energy demand reduction [J].
Royston, Sarah ;
Selby, Jan ;
Shove, Elizabeth .
ENERGY POLICY, 2018, 123 :127-135
[30]   Lauric acid/modified sepiolite composite as a form-stable phase change material for thermal energy storage [J].
Shen, Qiang ;
Ouyang, Jing ;
Zhang, Yi ;
Yang, Huaming .
APPLIED CLAY SCIENCE, 2017, 146 :14-22